Electrochemical Reduction of Methylene Blue and the Effect of Surfactants and Poly-Electrolytes

Methylene Blue의 전기화학적 환원과 계면활성제 및 고분자 전해질의 영향

  • Kim, Il-Kwang (Department of Chemistry Education, Wonkwang University) ;
  • Jeong, Seung-Il (Department of Chemistry Education, Wonkwang University) ;
  • Chun, Hyun-Ja (Department of Chemistry Education, Wonkwang University)
  • 김일광 (원광대학교 자연과학대학 화학과) ;
  • 정승일 (원광대학교 자연과학대학 화학과) ;
  • 천현자 (원광대학교 자연과학대학 화학과)
  • Published : 19950100

Abstract

The electrochemical reduction of methylene blue (MB) in 1.0${\times}$10-2 M KNO3 aqueous solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The electrode reduction of melthylene blue was processed CE reaction mechanism by two electrons transfer at the first reversible wave (- 0.18 volts vs. Ag/AgCl). MB was strongly adsorbed on the stationary mercury electrode and the reduction product of conptrolled potential electrolysis was rapidly auto-oxidized in air to the original methylene blue. Upon the basis of interpretation of cyclic voltammogram with pH change, possible CE electrode reaction mechanism was suggested.

$1.0{\times}10^{-2}M\; KNO_3$ 수용액에서 methylene blue(MB)의 전기화학적 환원을 직류 및 펄스차이 폴라로그래피, 순환 전압-전류법, 조절 전위 전기량법으로 조사하였다. MB의 전극환원은 처음 가역파(-0.18 volts vs. Ag/AgCl)에서 2전자 이동의 CE 반응기구로 진행되었다. Methylene blue는 정지된 수은전극에 강하게 흡착되었으며, 조절 전위 전기분해로 환원된 생성물은 공기중에서 빠르게 자동산화되어 본래의 MB로 돌아왔다. pH 변화에 따른 순환 전압-전류 그림과 폴라로그램의 해석을 근거로 하여 CE 반응기구를 제시하였다.

Keywords

References

  1. Photogr. Sci. Eng. v.18 Meryer, A.
  2. J. Phys. Chem. v.71 Nelson, R. C.
  3. Photogr. Sco. Eng. v.14 Tani, T.
  4. Angew. Chem. v.95 Van de Sande, C. C.
  5. J. Org. Chem. v.48 Fujita, S.
  6. J. Appl. Electrochem. v.16 Shimura, M.;Shakushiro, K.;Shimura, Y.
  7. Chem. Phys. Letters v.2 Maricle, D. L.;Maurer, A. H.
  8. Chem. Rev. v.71 Kearns, D. R.
  9. Photochem. Photobiol. v.15 Kramer, H. E. A.;Maute, A.
  10. Analyst v.12 Motomizu, S.;M. Oshima, M.
  11. Bunseki Kagaku v.32 Takada, N.;Sonoda, T.;Kobayashi, H.
  12. Anal. Chem. v.54 Motomizu, S.;Fujiwara, S.;Fujiwara, A.;Toei, K.
  13. Z. Electrochemie. v.61 Vetter, K. J.;Bardeleben, J.
  14. Anal. Chem. v.39 Wopschall, R. H.;Shain, I.
  15. J. Indian Chem. Soc. LIV. Malik, W. U.;Bembi, R.;Goyal, R. N.;Tandon, O. P.;Paliwal, R. K.
  16. J. Electroanal. Chem. v.152 Creager, S. E.;Marks, G. T.;Aikens, D. A.;Richtol, H. H.
  17. J. Phys. Chem. v.89 Kaifer, A. E.;BARD, A. J.
  18. Anal. Chem. v.60 Ye, J.;Baldwin, R. P.
  19. Electrochimica Acta v.35 Glezer, V.;Turovska, B.;Stradins, J.;Freimanis, J.
  20. Modern Polarograptic Methodes in Analytical Chemistry Bond, A. M.
  21. J. Nat. Sci. Choong Nam Univ. v.9 Park, C. H.;Yun, S. S.;Kim, Y. I.
  22. Polarographic Techniques(2nd Ed.) Meites, L.
  23. Electrochemical Methods Bard, A. J.;Faulkner
  24. Bull. Chem. Soc. Jpn. v.49 Watanabe, F.
  25. J. Phys. Chem. v.94 Spencer, W.;Sutter, J. R.
  26. Anal. Chem. v.39 Tzung, C. Y.
  27. Anal. Chem. v.36 Nicholson, R. S.;Shain, I.
  28. Instrumental Methods in Electrochemistry Peter, L. M.;Pletcher, D.;Robinson, J.;Greef, R.;Reat, R.
  29. Electrochemical Methods Bard, A. J.;Faulkner
  30. J. Am. Chem. Soc. v.80 Schmid, R. W.;Reilley, C. N.
  31. Anal. Chem. v.34 Rogers, L. B.;Pietrzyk, D. J.
  32. J. Phys. Chem. v.68 Anaker, E. W.;Rush, R. M.;Johnson, J. S.
  33. Rh. D. Thesis, Han Nam Univ. Electrochemical Reduction of Some Nitroaromatic Compounds Kim, I. K.
  34. Lange's Handbook of Chemistry(12th Ed.) J. A. Dean
  35. The Elucidation of Organic Electrode Process Zuman, P.