Spectroscopic Characterization of Soil Humic Acid Fractions by Molecular Weight

토양에서 추출한 흄산의 분자량별 분류에 따른 분광학적 성질 비교

  • Shin, Hyun Sang (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Moon, Hichung (Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Yang, Han Beom (Korea Atomic Energy Research Institute) ;
  • Yun, Sock Sung (Department of Chemistry, Chungnam National University)
  • 신현상 (한국과학기술원 화학과) ;
  • 문희정 (한국과학기술원 화학과) ;
  • 양한범 (한국원자력연구소) ;
  • 윤석승 (충남대학교 자연과학대학 화학과)
  • Published : 19950100

Abstract

The soil humic acid was subdivided into four subfractions by molecular weight (F1: >100.000 dalton; F2: >100.000 dalton; F3: >10.000 dalton; F4: >2.000 dalton) using MP-dual hollow fiber ultrafiltration system. The characterization using IR, 1H and 13C NMR spectroscopy, showed similar spectroscopic features of HA, demonstrating that the bulk properties of HA subfractions are very similar to one another. IR spectral data showed a decrease in polysaccharide contents and increase in carboxylate functionality as molecular weight become smaller.functions. The structure of (NO) can be described by two interactions (N${\cdot}{\cdot}{\cdot}$N, N${\cdot}{\cdot}{\cdot}$O). One is the ONNO structure with an (N${\cdot}{\cdot}{\cdot}$N) interaction. In this structure, acyclic cis-ONNO with $C_{2v}$-symmetry, acyclic trans-ONNO with $C_{2h}$, and cyclic ONNO with trapezoidal structure ($C_{2v}$) are optimized at the MP2 level. The other structure is the ONON structure with an (N${\cdot}{\cdot}{\cdot}$O) interaction. In the structure, acyclic cis-ONON with Cs$^{-symmetry}$ and cyclic ONON of the rectangular ($C_{2h}$), square $(D_{2h})$, rhombic $(D_{2h})$, and parallelogramic $(D_{2h})$ geometries are also optimized. It is found that acyclic cis-ONNO $(^1A_1$) is the most stable structure and cyclic ONNO ($^3A_1$) is the least stable. Acyclic trans-ONNO ($^3A_1$) with an (N${\cdot}{\cdot}{\cdot}$N) interaction, acyclic trans-ONON and bicyclic ONON $(C_{2v})$ with (N${\cdot}{\cdot}{\cdot}$O) interaction, and acyclic cis- and trans-NOON with an (O${\cdot}{\cdot}{\cdot}$O) interaction can not be optimized at the MP2 level. Particularly, acyclic trans-ONNO with $C_{2h}$-symmetry can not be optimized at the CCSD(T) level. Meanwhile, acyclic NNOO ($^1A_1$, $C_s)$ and trianglic NNOO ($^1A_1$,$C_{2v})$ formed by the (O${\cdot}{\cdot}{\cdot}$N) interaction between $O_2$and $N_2$are optimized at the MP2 level. The binding energies and the relative energy gaps among the isomers are found to be relatively small./sec. Spiral CT scans during the arterial phase were obtained 35 seconds after the injection of contrast medium. CT findings of 78 lesions less than 4cm in diameter were correlated with angiographic findings. Results : The attenuation of lesions was high(n = 69), iso(n = 5), and low(n = 4) compared with liver parenchyma during the arterial phase of spiral CT. In lesions with high-, iso-, and low-attenuation during the arterial phase of spiral CT, hypervascularity on angiograms was found in 63 of 69(91.3%), three of five(60%), and three of four lesions(75%), respectively. Six lesions with high-attenuation on the arterial phase of spiral CT were not seen on angiography. Two iso-attenuated and one low-attenuated lesion were hypovascular on angiograms. Conclusion : The results of this study suggest that with some exceptions there was good correlation between the arterial phase of spiral CT and angiography.

토양에서 얻어진 흄산(HA)을 한외 여과법을 이용 분자량에 따라 4개의 소부분(F1 : 100,000 dalton 이상; F2 : 100,000 dalton 이하;10,000 dalton 이하; F4 : 2,000 dalton 이하)으로 분리한 뒤 적외선 분광법과 핵자기 공명 분광법을 통하여 각 소부분들의 분광학적 특성을 규명하고 상호간에 비교 분석하였다. 4개 소부분들의 $1^H$$13^C$ NMR 스펙트럼은 전체적인 특성에서 모두 흄산 모액 스펙트럼과 유사하게 나타났다. 이 결과는 분자량이 변하더라도 흄산의 전체적 특성이 그대로 유지됨을 제시한다. 차이점으로는 IR 스펙트럼 결과 분자량이 적어지면서 다당류 성분 함량이 다소 감소된 반면 카르복실기 성분 함량은 조금 증가된 것으로 나타났다.

Keywords

References

  1. Humic Substances in Soil, Sediment and Water Swift, R. S.;Aiken, G. R.(ed.);McKnight, D. M.(ed.);Wershaw, R. L.(ed.);MacCarty, P.(ed.)
  2. Anal. Chem. v.61 Buddrus, J.;Burba, P.;Herzog, H.;Lambert, J.
  3. Humus Chemistry, Genesis, Composition, Reactions Stevenson, F. J.
  4. Anal. Chim. Acta v.232 Wershaw, R. L.;Pinckney, D. J.
  5. Geochim. Cosmochim. Acta v.45 Reuter, J. H.;Perdue, E. M.
  6. Anal. Chem. v.53 Trutter, R. E.;Weber, J. H.
  7. Bull. Korean Chem. Soc. v.15 Shin, H. S.;Moon, H. C.;Yang, H. B.;Yun, S. S.
  8. J. Magn. Reson. v.7 Freeman, R.;Hill, H. D. W.;Kaptein, R.
  9. Soil. Sci. Soc. Am. J. v.48 Preston, C. M.;Schnizer, M.
  10. Humus Chemistry, Genesis, Composition, Reactions Stevenson, F. J.
  11. Soil. Sci. v.102 Theng, B. J. G.;Wake, J. R. H.;Posner, A. M.
  12. Soil Sci. Soc. Am. J. v.50 Skemstad, J. O.;Dalal, R. C.;Barron, P. F.
  13. J. Soil Sci. v.32 Willson, M. A.
  14. J. Soil Sci. v.38 Prestonl, C. M.;Schnitzer, M.
  15. NMR of Humic Substances and Coal Preston, C. M.;Wershaw, R. L.(ed.);Mikita, M. A.(ed.)
  16. Soil Biol. Biochem. v.3 Martin, J. P.
  17. Soil Sci. Soc. Am. J. v.53 Aly, S. M.;Letey, J.