Synthesis of Tridentate Schiff base Molybdenum(Ⅴ) Complexes and Their Electrochemical Properties in Aprotic Solvents

세자리 Schiff base 몰리브데늄(Ⅴ) 착물들의 합성과 비수용매에서의 전기화학적 성질

  • 최용국 (전남대학교 자연과학대학 화학과) ;
  • 송미숙 (전남대학교 자연과학대학 화학과) ;
  • 임채평 (전남대학교 자연과학대학 화학과) ;
  • 조기형 (전남대학교 자연과학대학 화학과)
  • Published : 19950100

Abstract

Tridentate Schiff base molybdenum(V) complexes such as [Mo(Ⅴ)2O(SOHB)4], [Mo(Ⅴ)2O3(SOIP)2(NCS)2] and [Mo(Ⅴ)2O3(SOTB)2(H20)2](SOHB: Salicylidene-o-imino hydroxybenzene, SOIP; Salicylidene-o-imino pyridine, SOTB; Salicylidene-o-imino thiolbenzene) were synthesized and identified by elemental analysis, spectroscopy, and thermogravimetric analysis (TGA). It was found that the mole ratio of Schiff base ligand to the metal in these complexes is 1 : 1 or 1 : 2. The redox processes of the complexes were investigated by cyclic voltammetric and differential pulse polarographic techniques in nonaquous solvent containing 0.1 M tetraethylammonium perchlorate (TEAP) as supporting electrolyte at glassy carbon electrode. It was found that diffusion controlled reduction processes with one electron were Mo(Ⅴ)Mo(Ⅴ)e-→ Mo(Ⅴ)Mo(Ⅳ)e-→Mo(Ⅳ)Mo(Ⅳ)e-→Mo(Ⅳ)Mo(Ⅲ).

세자리 Schiff base의 몰리브네늄(V) 착물로써 $[Mo(Ⅴ)_2O(SOHB)_4],\; [Mo(Ⅴ)_2O_3(SOIP)_2(NCS)_2]$$ [Mo(Ⅴ)_2O_3(SOTB)_2(H_20)_2]$ (SOHB: Salicylidene-o-imino hydroxybenzene, SOIP; Salicylidene-o-imino pyridine, SOTB; Salicylidene-o-imino thiolbenzene)들을 합성하였다. 이들 착물들의 원소분석과 금속정량, IR, UV-visible spectrum 및 열무게분석(TGA)으로부터 금속과 리간드의 몰비가 1:1 및 1:2 착물임을 확인하였다. 0.1 M tetraethylammonium perchlorate (TEAP) 지지전해질을 포함한 비수용매에서 순환 전압-전류법과 시차펄스 폴라로그래피에 의한 전기화학적 측정으로부터 이들 착물들은 일전자 전이의 확산지배적인 환원과정이 다음과 같이 진행됨을 알았다. Mo(Ⅴ)Mo(Ⅴ)e-→ Mo(Ⅴ)Mo(Ⅳ)e-→Mo(Ⅳ)Mo(Ⅳ)e-→Mo(Ⅳ)Mo(Ⅲ).

Keywords

References

  1. Enzymes v.12 Bary, R. C.
  2. Prog. Inorg. Chem. v.22 Stiefel, E. I.
  3. Metal Ion in Biological Systems v.5 Spence, J. T.;Sigel, H.(ed.)
  4. J. Biochem. v.14 Lawrence, G. D.;Spence, J. T.
  5. J. Biochem. v.155 Bray, R. C.;Viencent, S. P.;Lowe, D. J.;Clegg, R. A.;Garland, P. B.
  6. J. Am. Chem. Soc. v.88 Balch, A. L.;Holm, R. H.
  7. J. Am. Chem. Soc. v.87 Stiefel, E. I.;Billing, J. H.;Gray, H. B.
  8. J. Am. Chem. Soc. v.87 Balch, A. L.;Rohsheid, F.;Holm, R. H.
  9. Polym. Bull. v.3 Wohle, D.
  10. J. Mol. Catal. v.7 Nishinaga, A.;Tomita, H.
  11. J. Am. Chem. Soc. v.88 Sacconi, W.;Bertini, I.
  12. Inorg. Chem. v.6 Moore, F. W.;Larson, M. L.
  13. Inorg. Chem. v.8 Pence, H. E.;Selbin, J.
  14. Inorg. Chim. Acta v.7 Sabat, R. H.;Rudolf, M. F.;Jezowska-Trzebiatowska, B.
  15. Inorg. Chem. v.21 Pickett, C.;Kumer, S.;Vella, P. A.;Zubicta, J.
  16. Inorg. Chem. v.23 Chaudhury, M.
  17. J. Kor. Chem. Soc. v.35 Chjo, K. H.;Choi, Y. K.;Seo, S. S.;Lee, S. J.
  18. J. Kor. Chem. Soc. v.35 Chjo, K. H.;Choi, Y. K.;Seo, S. S.;Lee, S. J.
  19. J. Kor. Chem. Soc. v.36 Chjo, K. H.;Choi, Y. K.;Lee, S. J.;Kim, C. Y.;Rim, C. P.
  20. J. Chem. Soc(A) Bamfield, P.
  21. Inorg. Chem. v.4 Cotton, F. A.;Wing, R. M.
  22. J. Inorg. Nuclear. Chem. v.27 Edward, D. A.
  23. Electrochemical Methods Bard, A. J.;Faulkner, L. R.
  24. Electrochemical Methods Bard, A. J.;Faulkner, L. R.