• 제목/요약/키워드: Different particle size

검색결과 1,438건 처리시간 0.035초

대기오염 입자의 인체 호흡기내 비대칭 국부침전 특성에 관한 연구 (Study on the Asymmetric Regional Deposition of Airborne Pollutant Particles in the Human Respiratory Tract)

  • 구재학;김종숭
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.551-560
    • /
    • 2003
  • Particle deposition in human lungs was investigated theoretically by using asymmetric five-lobe lung model. The volumes of each of the five lobes were different, thereby forming an asymmetric lung structure. The tidal volume and flow rate of each lobe were scaled according to lobar volume. The total and regional deposition with various breathing patterns were calculated by means of tracking volume segments and accounting for particle loss during inhalation and exhalation. The deposition fractions were obtained for each airway generation and lung lobe, and dominant deposition mechanisms were investigated for different size particles. Results show that the tidal volume and flow rate have a characteristic influence on particle deposition. The total deposition fraction increases with an increase in tidal volume for all particle sizes. However, flow rate has dichotomous effects: a higher flow rate results in a sharp increase in deposition for large size particles, but decreases deposition for small size particles. Deposition distribution within the lung shifts proximally with higher flow rate whereas deposition peak shifts to the deeper lung region with larger tidal volume. Deposition fraction in each lobe was proportional to its volume. Among the three main deposition mechanisms, diffusion was dominant for particles < 0.5 ${\mu}{\textrm}{m}$ whereas sedimentation and impaction were most influential for larger size particles. Impaction was particularly dominant for particles> 8 ${\mu}{\textrm}{m}$. The results may prove to be useful for estimating deposition dose of inhaled pollutant particles at various breathing conditions.

Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 1. Effect of Synthesis Conditions

  • Seo, Hee Sung;Lee, Hyun Kyung;Yoo, Eui Sang
    • 한국염색가공학회지
    • /
    • 제27권4호
    • /
    • pp.229-244
    • /
    • 2015
  • The effects of synthesis conditions on characteristics of the calcium-azo complex pigment, C.I. Pigment Red 57:1, were studied. It was mainly considered that the industrially required synthesis conditions for lowering electrical conductivity of the pigment solution keeping pigment quality such as particle size and color characteristics. Three parameters were chosen as control factors during the synthesis. The first was the amount of hydrochloric acid added to transform sodium nitrite into nitrous acid. The second was the amount of calcium chloride added to insolubilize the synthesized azo dye. The final factor was pH control during the coupling reaction. The electrical conductivity and pigment aggregate particle size were dependent on the amount of hydrochloric acid and calcium chloride. Higher HCl concentration gave brighter yellowish-red color because of smaller particle aggregate size and narrower size distribution. Amount of charged ions in the synthesis process might affect the "lake" formation resulting different particle aggregate size and color shade.

Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Lazemi, Hossein Ali
    • Structural Engineering and Mechanics
    • /
    • 제67권5호
    • /
    • pp.505-516
    • /
    • 2018
  • In this paper, the effects of particle size and model scale of concrete has been investigated on the failure mechanism of PFC2D numerical models under uniaxial compressive test. For this purpose, rectangular models with same particle sizes and different model dimensions, i.e., $3mm{\times}6mm$, $6mm{\times}12mm$, $12mm{\times}24mm$, $25mm{\times}50mm$ and $54mm{\times}108mm$, were prepared. Also rectangular models with dimension of $54mm{\times}108mm$ and different particle sizes, i.e., 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, 1.87 mm and 2.27 mm were simulated using PFC2D and tested under uniaxial compressive test. Concurrent with uniaxial test, direct shear test was performed on the numerical models. Dimension of the models were $75{\times}100mm$. Two narrow bands of particles with dimension of $37.5mm{\times}20mm$ were removed from upper and lower of the model to supply the shear test condition. The particle sizes in the models were 0.47 mm, 0.57 mm, 0.67 mm and 0.77 mm. The result shows that failure pattern was affected by model scale and particle size. The uniaxial compressive strength and shear strength were increased by increasing the model scale and particle size.

Effect of Particles Size on Magnetic Performance of Dielectromagnetics

  • Gaworska, Dominika;Hodgson, Simon N.B.;Koniarek, Jaroslaw;Weglinski, Bogumil
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.792-793
    • /
    • 2006
  • In the paper, the influence of different particle size $D:D>125{\mu}m$, $D<50{\mu}m$ and between on magnetic properties of a standardized dielectromagnetic is presented. The tests were taken at frequencies of between 50Hz, and 500Hz. Presented in the paper results provide important materials property data to allow the selection of the most appropriate dielectromagnetic particle size for different applications.

  • PDF

서스펜션 중에서 입자의 형태와 크기가 침강특성에 미치는 영향 (The Effect of Particle Shape and Size on the Settling Characteristics in Suspension)

  • 이기종
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.927-933
    • /
    • 1994
  • 비구형 입자들의 크기와 형태에 따른 침강 특성의 영향을 검토하였다. 비구형입자를 포함하는 서스펜션의 침강에서 $log \mu_{c}$$log \varepsilon$로부터 얻은 기울기 지표n값은 형태와 크기가 다른 입자는 같은 부피 농도에서 흡착되는유체량이 달라져 입자크기가 감소하거나 불균일한 경우 증가하는 경향을 나타내었다. 실험결고 비구형입자를 포함하는 서스펜션의 침강에서 기울기 지표 $n_{i}$값에 대하여 $n_{i}=n(a+b/d_{v})$와 같은 식을 얻었으며 이때 a, b는 입자형태에 따른 상수이다.

  • PDF

Effect of Particle Size on the Mechanical and Electrical Properties of Epoxy/Spherical Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권1호
    • /
    • pp.39-42
    • /
    • 2013
  • The effects of particle size on the mechanical and electrical properties of epoxy/spherical silica composites were studied. The silica particle sizes were varied from 5 to 30 ${\mu}m$ and the filler content was fixed to 60 wt%. Tensile and flexural tests were carried out and the interfacial morphology was observed by scanning electron microscopy (SEM). The electrical insulation breakdown strength was estimated using sphere-sphere electrodes with different insulation thicknesses of 1, 2 and 3 mm. The tensile strength and flexural strength increased with decreasing particle size, while electrical insulation breakdown strength increased with increasing particle size.

Turbidimetric Measurement for On-line Monitoring of SiO2 Particles

  • Kim, In-Sook;Kim, Yang-Sun;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권6호
    • /
    • pp.801-805
    • /
    • 2004
  • In this work, the fundamental study of on-line monitoring of $SiO_2$ particles in the size range of 40 nm to 725 nm was carried out using turbidimetry. The size of particle was measured using a field emission scanning electron microscope (FE-SEM). The factors affecting on the turbidity were discussed, for example, wavelength, size, and concentration. In order to observe the dependence of turbidity on the wavelength, a turbidimetric system equipped with charged coupled detector (CCD) was built. The shape of the transmitted peak was changed and the peak maximum was shifted to the red when the concentration of particle was increased. This result indicates that the turbidity is related to the wavelength, which corresponds to the characteristic of the Mie extinction coefficient, Q, that is a function of not only particle diameter and refractive index but also wavelength. It is clear that a linear calibration curve for each particle in different size can be obtained at an optimized wavelength.

슬릿 임팩터의 입자 포집 효율에 관한 연구 (An Experimental Study on Particle Collection Efficiency of the Slit Impactor)

  • 황창덕;허재영;김상수
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.689-696
    • /
    • 1989
  • 본 실험에서는 종래와는 달리 먼저 입출구 부분에서 입자분포 측정장치를 이용하여 실험함으로써 여러 가지 입자크기에 대하여 동시에 효율을 구할 수 있는 장치를 구성하고 앞에서 열거한 여러 가지 실험인자중 레이놀즈수와 S/W를 변화시키면 서 일단 슬릿 임팩터(one-stage slit impactor)의 효율을 .root.Stk에 따라 구하여 일단 임팩터 뿐만 아니라 다단 임팩터(multistage impactor)에 대한 설계기초자료를 마련하 고자 한다.

Experimental Studies on Plasmon Resonance of Ag Nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG)

  • Lopez Salido, Ignacio;Bertram, Nils;Lim, Dong-Chan;Gantefor, Gerd;Kim, Young-Dok
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.556-562
    • /
    • 2006
  • Studies on Ag nanoparticles grown on Highly Ordered Pyrolytic Graphite (HOPG) using HREELS provide different results for smaller and larger particle sizes corresponding to Ag coverages below and above 4 monolayers, respectively. For the larger particles, a positive frequency shift with decreasing particle size and a broadening of the plasmon resonance were observed with decreasing particle size, in line with previous studies on Ag on alumina. For the smaller particles, in contrast, a shift to lower energy with decreasing particle size, and a narrowing of the plasmon resonance with decreasing particle size can be found. The asymmetry of the Ag-features present for Ag coverages above 4 monolayers disappears for Ag coverages below 4 monolayers. The result for the smaller particles can be rationalized in terms of change of the particle growth mode with increasing particle size, which corroborates our STM data, as well as electronic effects due to the metal/support charge transfer.

단일입자 질량분석기를 애용한 서브마이크론 입자의 특성화(I) - 입자의 크기와 질량분광신호의 비선형성 - (Characterization of submicron Particles Using a Single Particle Mass Spectrometer(I) - Non - Linear Correlation Between Particle Size and Mass Spectra Signals -)

  • ;이동근
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.453-459
    • /
    • 2005
  • In this paper, we are proposing a robust tool which is capable of measuring the size and elemental composition of submicron particles from twenty to several hundreds nanometers at the same time, i.e., named Single Particle Mass Spectrometer (SPMS). The home-made SPMS employs a laser ablation/multi-photon ionization method to tear a nanoparticle into the constituent elemental ions. One thing different from the conventional Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is the power of the ionization laser. Much strong laser used in this work makes it possible to generate elemental ions rather than molecular ions from a nanoparticle. Also the use of high power laser may guarantee a complete ionization of a particle, which was confirmed by the existence of multiple charged ions. If a particle is evaporated/ionized completely and detected through electric field-free TOF tube without any loss, we can extract the original particle volume from the measured total ion numbers. Collecting a number of particles mass spectra, we get a database of size and elemental composition of nanoparticles, with which we may take a took into any kinds of chemical reaction occurring at nanoscale. Several issues related to size estimation by SPMS will be discussed.