• Title/Summary/Keyword: Difference equations

Search Result 1,394, Processing Time 0.026 seconds

Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions (분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析))

  • Suk-Yoon,Chang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Fractional radioactive decay law and Bateman equations

  • Cruz-Lopez, C.A.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.275-282
    • /
    • 2022
  • The aim of this work is to develop the fractional Bateman equations, which can model memory effects in successive isotopes transformations. Such memory effects have been previously reported in the alpha decay, which exhibits a non-Markovian behavior. Since there are radioactive decay series with consecutive alpha decays, it is convenient to include the mentioned memory effects, developing the fractional Bateman Equations, which can reproduce the standard ones when the fractional order is equal to one. The proposed fractional model preserves the mathematical shape and the symmetry of the standard equations, being the only difference the presence of the Mittag-Leffler function, instead of the exponential one. This last is a very important result, because allows the implementation of the proposed fractional model in burnup and activation codes in a straightforward way. Numerical experiments show that the proposed equations predict high decay rates for small time values, in comparison with the standard equations, which have high decay rates for large times. This work represents a novelty approach to the theory of successive transformations, and opens the possibility to study properties of the Bateman equation from a fractional approach.

OSCILLATORY BEHAVIOR OF THE SECOND-ORDER NONLINEAR NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Dong, Wenlei;Ping, Bi
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.111-128
    • /
    • 2001
  • In this paper, we consider the oscillation of the second-order neutral difference equation Δ²(x/sub n/ - px/sub n-r/) + q/sub n/f(x/sub n/ - σ/sub n/) = 0 as well as the oscillatory behavior of the corresponding ordinary difference equation Δ²z/sub n/ + q/sub n/f(R(n,λ)z/sub n/) = 0

THE CONVERGENCE OF FINITE DIFFERENCE APPROXIMATIONS FOR SINGULAR TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lee, H.Y.;Seong, J.M.;Shin, J.Y.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.299-316
    • /
    • 1999
  • We consider two finite difference approxiamations to a singular boundary value problem arising in the study of a nonlinear circular membrane under normal pressure. It is shown that the rates of convergence are O(h) and O($h^2$), respectively. An iterative scheme is introduced which converges to the solution of the finite difference equations. Finally the numerical experiments are given

  • PDF

DIFFERENCE OF TWO SETS AND ESTIMATION OF CLARKE GENERALIZED JACOBIAN VIA QUASIDIFFERENTIAL

  • Gao, Yan
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.2
    • /
    • pp.473-489
    • /
    • 2001
  • The notion of difference for two convex compact sets in Rⁿ, proposed by Rubinov et al, is generalized to R/sub mxn/. A formula of the difference for the two sets, which are convex hulls of a finite number of points, is developed. In the light of this difference, the relation between Clarke generalized Jacobian and quasidifferential, in the sense of Demyanov and Rubinov, for a nonsnooth function, is established. Based on the relation, the method of estimating Clarke generalized Jacobian via quasidifferential for a certain class of function, is presented.

REPDIGITS AS DIFFERENCE OF TWO PELL OR PELL-LUCAS NUMBERS

  • Fatih Erduvan;Refik Keskin
    • Korean Journal of Mathematics
    • /
    • v.31 no.1
    • /
    • pp.63-73
    • /
    • 2023
  • In this paper, we determine all repdigits, which are difference of two Pell and Pell-Lucas numbers. It is shown that the largest repdigit which is difference of two Pell numbers is 99 = 169 - 70 = P7 - P6 and the largest repdigit which is difference of two Pell-Lucas numbers is 444 = 478 - 34 = Q7 - Q4.

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

Estimating Diameter and Height Growth for Pinus densiflora S. et Z. Using Non-linear Algebraic Difference Equations (비선형(非線型) 대수차분(代數差分) 방정식(方程式)을 이용(利用)한 소나무 직경(直徑) 및 수고(樹高) 생장(生長) 추정(推定))

  • Lee, Sang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.210-216
    • /
    • 2001
  • Pinus densiflora S. et Z. has widely been distributed, and is one of the important main foret resources in Korea. Diameter and height growth patterns were estimated using non-linear algebraic difference equation, which requires two-measurement times $T_1$ and $T_2$. To maximize data use, all possible measurement interval data were derived using Lag and Put statements in the SAS. In results, of the algebraic difference equations applied, the Schumacher and the Gompertz polymorphic equations for diameter and height, respectively showed the higher precision of the fitting. In order to allow more precise estimation of growth than those of the basic Schumacher and the Gompertz, further refinement that combine biological realism as input into the equation would be necessary.

  • PDF