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ON CONVERGENCE OF FINITE DIFFERENCE

SCHEMES FOR GENERALIZED SOLUTIONS

OF ELLIPTIC DIFFERENTIAL EQUATIONS

s. K. CHUNG AND H.-J. KIMN

1. Introduction

Let n be a rectangular domain in ]R2 with boundary on. We con­
sider finite difference approximations for the generalized solutions of
elliptic differential equations of the form

(1.la) A(x)u(x) = f(x), x E n,

with boundary condition

(Llb) u(x)=O, x E on.

Here A(x) is a second order, self-adjoint elliptic operator with smooth
coefficients which has the following form

2 00
A(x)u = - L oXl (a1q(x) 0: ) + a(x)u.

~q=l q

Approximate solutions and error estimates for (1.1) have been ob­
tained through energy arguments using Taylor's Theorem. This tra­
ditional approach to the study of the rate of convergence requires a
high degree of smoothness for the exact solutions. Cosequently, Tay­
lor's Theorem is not the natural framework in which to establish orders
of convergence in weaker norms for finite difference approximations of
non-smooth solutions.
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In a celebrated paper on exact finite difference approximations for
the generalized solutions of two point boundary value problems, Tikh­
onov and Samarskii[lO], have obtained rates of convergence which are
compatible with the smoothness of their solutions. But their meth­
ods do not apply to the multidimensional case. Recently, there have
been some results on the approximation of the generalized solutions for
linear prabolic and hyperbolic partial differential equations via finite
difference schemes (see Lazarov et al. [7]-[8], Jovanovic et al. [5]-[6],
and Pani et al. [9]).

The key to the above approaches is to compare the exact solution
with a suitable mollified approximation such as the average values on
cells around grid points (instead of point estimates). Such averaging
can be defined using the Steklov mollifier. The resulting comparisons
of the exact and approximate solutions with the mollified approxima­
tion yield sharp orders of convergence in an elegant manner. Similar
procedures are utilized here.

In the present paper, we investigate rates of convergence of finite
difference schemes for the approximate solution of (1.1). As for the
finite element method, we obtain orders of convergence compatible with
the smoothness of the solution. A discrete projection technique is then
introduced to reduce the regularity to that of the generalized solution.

The preliminary material is -given in Section 2. In Section 3, a dis­
crete schem:e forCl.1}is analyzed,and stability results for a modified
scheme are derived, which yield the required error estimates in the
discrete L 2 and HI norms. Nitche's technique is applied to the dis­
crete scheme, and the error estimates with reduced regularity on u are
derived, which yield O(hQ

), 1 < et S 2, convergence in the discrete
L2-norm.

2. Preliminaries

We may assume, without loss of generality, that the domain n is the
unit square in R2 • For the numerical solution of (1.1), we select a mesh
of width h = k, where M is a positive integer, and cover fi = nu an
with a square grid of mesh points Xii = (ih,jh), for i,j = 0,1, ... ,M.
Let nh = {xii: Xii E n} and anh = {xii: Xii E an}. We can cover
the whole of R2 with such a square grid, and will denote it by Ri.
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For any function v defined on R.~, we adopt the following notation:
for x E R.i and 1=1,2,

and

o () v(x+he,)-v(x)
v zv x = h '

i7 () v(x)-v(x-hez)
v Zv x = h '

where ez is the I-th unit vector in ]R2.

The Steklov mollifiers axe defined in the following manner:

where

s = s;si with sl = Sis" 1=1,2,

sttjJ(x) =11

tjJ(x+shez)ds, S,tjJ(x) = L: tjJ(x+shez)ds.

The operators st commute, and the following relations hold

sltjJ(x) = 1° (1 + s)tjJ(x + shez) ds + t (1- s)tjJ(x + shez) ds,
-1 10

and

(2.1)

Let 'Dh denote the mesh functions defined on ]Ri which vanish out­
side of Oh. For u, v E 'Dh, we now introduce the discrete L2 space,
denoted by LI(Oh), with inner product and norm given by

(w,v) =h2 L w(x)v(x),
xEl!~

and
IIwllo,h = (w, w) t ,
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respectively. Further, let H~ = HlCnh) denote the discrete analogue

of the H1-Sobolev space with norm IIwlltk = IIwll~,h + L:~=1IlVlwIl2.
We also introduce a discerete H 2-Sobolev space with norm

Z
2 2 ~ - ZII w llz,k = IIwlh,h + L.J 1IV'1V'qwllo,k'

l,q=l

and denote it by H~ = H~(nh).

Whenever there is no confusion, we write IIwll and IIwlli' for j = 1,2,
in place of IIwllo,h and \IWl!i,h, respectively. Throughout the paper,
11· 11 L2 and 11 ·11 Wm,F (0) will denote the norm in the LZ and the Sobolev
space Wm,p(n), respectively. Further, I . Iwm,F(O) denotes the semi­
norm on Wm,p(n). In particular, for p = 2, we denote Wm,p(n) by
Hm(n) .

For functions v and w which vanish on ank , the following identities
are easy consequences of summation by parts:

(2.2) (V',V, w) = -(v, V,W), 1= 1,2.

The basic lemma, which will be used in the following sections, are
given below... Along with the Bramble--Hilbert Lemma(see, Bramble
and lIilbert[l} and Dupont and S~ott[4]),thefollowing oilinear version
of it will be needed for our convergence analysis. For a proof, we refer
the reader to Ciarlet[2].

LEMMA 2.1. Let Prr} be the set of all polynomials of degree:5 [r],
where [r] denotes the largest integer less than r > O. If TJ is a bounded
bilinear functional on WO,p(n) x w,B,q(n), with a,p E (0,00) and
p, q E [1,00] such that

TJ(U,v) = 0,

17(u, V) = 0,

VU E p[a}(n), Vv E w,B,q(n),

Vu E Wa,p(n), VV E p[,B}(n),

then there exists a positive constant C such that

117(u, v) I::; C Iu IWClt,F(O) I v Iw.e,q(o),

Vu E Wa,p(n), Vv E w,B,q(n).
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We shall frequently use the following inequality

61

(2.3) a,b ER, c > O.

We write C as a generic positive constant independent of the discretiz­
ing parameters h.

3. Discrete Schemes

In this section, the stability and error analysis for a discrete scheme
of (1.1) will be given. Let Ah(x) be the finite difference approximations
for the operators A(x), defined by

2

Ah(X)V = -~ 2: [V,(a,q(x)VqV) + V,(a,q(x)VqV)] + S(a(x»V,
l,q=l

for x E 1"h. In order to minimize the regularity imposed on a(x )
in the subsequent analysis, it is necessary to work with the Steklov
mollification S(a(x» in the above approximations.

Our discrete approximation U on 0 h to (1.1) is now defined by

(3.1) Ah(X)U(X) = Sj(x), x E Oh,

U(x) = 0, x E aOh.

We first consider a modified difference scheme of (3.1); namely,

(3.2)
2

Ah(x)U(x) = Sj(x) + I:V,F(x),
1=1

where F, defined on Oh, vanishes on aOh.
Let H5,h = {v E Hl : v = Oon aOh}. On the basis of the as­

sumptions imposed on A(x), the following lemma can be verified using
summation by parts.
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LEMMA 3.1. For V, WE HJ h' we have the following inequalities:,
(1) the discrete Poincare inequality: 11V1I2

::; CL:~=1I1VlVII2,
(2) (Ah(t)V, V) 2 eollVlli,

where Co is a positive constant.

The stability analysis will be formulated in the discrete norm.

THEOREM 3.1. Let U be a solution of (3.2). Then there exists a
constant C such that

IIUII ::; C[IISfl/ + I/FII]·

Proof. Forming the discrete L2 inner product between (3.2) and U,
we obtain

2

(Ah(X)U,U) = (Sf,U) + L(V1F,U).
1=1

Using Lemma 3.1, we obtain

IIUII~ :S C[lISfIlI\UI\ + 1/FllllUlh]·

An application of the inequality (2.3) now completes the proof. 0

Using Theorem 3.1, we now derive the following error estimate in
e(x) = u(x) - U(x).

THEOREM 3.2. Let u and U be the solution of (1.1) and (3.1),
respectively. Then the error e(x) = u(x ) - U(x) satisfies the following
estimate

1 < et ::; 3.

Proof. From (1.1) and (3.1), it follows that

Following Jovanovic et al. [6], the integrand G1(x) is rewritten as

2

G1(x) = L VI17lq(X) + 7J(x),
l,q=l
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where

with

(1) + 2 ( VU) (S+ 2 ) (+S2 VU)T/lq = S, S3_1 a'qVX
q

- I S3_1a1q S, 3-1 VXq ,

and
T/ = (Sa)u - S(au).

To estimate T/, we first note that

T/ = (Sa)(u - Su) + (Sa)(Su) - S(au).

63

As in Pani et al.[9], the Bramble-Hilbert Lemma along with Lemma
2.1 yields

And we obtain the following estimate for T/lq as in Jovanovic et al. [6]

2

L 1IT/lq(x)1I 2 ~ Ch a
-

1
I1 u(x)IIHa(o), 1 < a ~ 3,

l,q=l

where the constant C depends on max',q IlalqIILOO(Wa-1,OO). Theorem
3.1 now completes the proof. 0

We now derive the L 2-error estimates with order of convergence com­
patible with the regularity on the generalized solution u with reduced
regularity.
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THEOREM 3.3. There exists a constant C, which depends on u,
such that

Proof. For the estimation of 11 elh, we take the discrete inner product
of (3.1) with e and obtain

Using the estimate for G l from Theorem 3.2, we obtain

Here the constant C depends on lIullH2(o), maxl,q I alq IW1,OO, and
lalwl.oo. Now from the coercivity of the operator Ah, the required
estimate follows for 11 e111.

For the discerete £2 estimate, we define ~ as the solution of

(3.3)

Because of the coercivity of AA, q) is a unique solution of (3.3) with
appropriate regularity

(3.4)

Forming the discrete inner product between (3.3) and e, we find that

(3.5) (e, e) = (Ahe,~) = (AhU - SAu,~)

= (Gh~).

For the estimation of G l , we decompose G l , as in Theorem 3.2, and
obtain, with an application of Lemma 2.1,
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For the estimation of L7,q=1 (7]~) , 'VI«P), we consider it term by term.
For 1= 1, q = 2,

( (3) ( + 2 OU 1 - + 1 + )7]12' 'Vl «P) = SI S2 OX2 - 2(V'2U+ 'V2u ), 2(a12 + a I2 )V'I«P

= ('V2 [si S2"u - ~(u + u+l ,-2)], ~(aI2 + atn'V l iP) .
Here, we have used (2.1) and V',U = 'V,u(x - e,h). The application of
(2.2) yields

!( (3) ( + 1 +1 2 - (1 ( +1)))7]12' 'V l «P) I = SI S2"u - 2(U + U ,-), 'V2 2 a12 + a 12 'V l «P

~clIsi S2"u - ~(u + u+ l ,-2)1I11«p1I2'

Since SiS2"u - f(u + U+1,-2) vanishes for all u E Pll an application
of the Bramble-Hilbert Lemma yields

The estimator for (1J~~), 'VI «p) is obtained in a similar manner.
For 1= 1, q = 1,

Since S~u - u vanishes for all u E PI, an application of the Bramble­
Hilbert Lemma again yields
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The estimate for (77~~), V'24» is obtained in a similar manner.
Using Lemma 2.1, we can derive the following estimates

2 2

L (77}:) , V'14» '5: Gh2 L la,qlw"',oo lI u IlH"'-l(o)II4>lb,
l,q=l l,q=l

2 2

L (77~), V'14» '5: Gh2( L la,q!w",-l.OO )/uIH"'(0)/I4>1I2'
l,q=l l,q=l

and from the Bramble-Hilbert lemma we obtain

1(77,4»1'5: I«(Sa)(u - Su) + (Sa)(Su) - S(au), 4»1

'5: GhQ [IaILOO(O) lulH'" (0) + lalw"'-l.oo(o)luIH"'-l(o»)II4>/I],
1 < a '5: 2.

It therefore follows that

Using the regularity condition (3.4), we obtain

with C depending on !alw"'-l.00(O) and max19,q9I1a,qllw"'-1.oo(0)'
This completes the proof of Theorem 3.3. 0
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