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ON CONVERGENCE OF FINITE DIFFERENCE
SCHEMES FOR GENERALIZED SOLUTIONS
OF ELLIPTIC DIFFERENTIAL EQUATIONS

S. K. CHUuNG AND H.-J. KIMN

1. Introduction

Let Q be a rectangular domain in R? with boundary 8§2. We con-
sider finite difference approximations for the generalized solutions of
elliptic differential equations of the form

(1.1a) A(z)u(z) = f(z), z€Q,
with boundary condition
(1.1b) u(z) =0, z € 0.

Here A(z) is a second order, self-adjoint elliptic operator with smooth
coefficients which has the following form

2
Alz)u = — Z ba?l(a,q(x)-g;u;) + a(z)u.

l,¢=1

Approximate solutions and error estimates for (1.1) have been ob-
tained through energy arguments using Taylor’s Theorem. This tra-
ditional approach to the study of the rate of convergence requires a
high degree of smoothness for the exact solutions. Cosequently, Tay-
lor’s Theorem is not the natural framework in which to establish orders
of convergence in weaker norms for finite difference approximations of
non-smooth solutions.
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In a celebrated paper on exact finite difference approximations for
the generalized solutions of two point boundary value problems, Tikh-
onov and Samarskii[10}, have obtained rates of convergence which are
compatible with the smoothness of their solutions. But their meth-
ods do not apply to the multidimensional case. Recently, there have
been some results on the approximation of the generalized solutions for
linear prabolic and hyperbolic partial differential equations via finite
difference schemes (see Lazarov et al. [7]-[8], Jovanovi¢ et al. [5]-[6],
and Pani et al. [9]).

The key to the above approaches is to compare the exact solution
with a suitable mollified approximation such as the average values on
cells around grid points (instead of point estimates). Such averaging
can be defined using the Steklov mollifier. The resulting comparisons
of the exact and approximate solutions with the mollified approxima-
tion yield sharp orders of convergence in an elega,nt manner. Similar
procedures are utilized here.

In the present paper, we investigate rates of convergence of finite
difference schemes for the approximate solution of (1.1). As for the
finite element method, we obtain orders of convergence compatible with
the smoothness of the solution. A discrete projection technique is then
introduced to reduce the regularity to that of the generalized solution.

The preliminary material is-given in Section 2. In Section 3, a dis-
crete scheme for (1.1) is analyzed; and stability results for a modified
scheme are derived, which yield the required error estimates in the
discrete L? and H' norms. Nitche’s technique is applied to the dis-
crete scheme, and the error estimates with reduced regularity on u are
derived, which yield O(h?), 1 < a < 2, convergence in the discrete
L?-norm.

2. Preliminaries

We may assume, without loss of generality, that the domain 2 is the
unit square in ]R2 For the numerical solution of (1.1), we select a mesh
of width k = 47, where M is a positive integer, and cover Q=QUaN
with a square grld of mesh points z;; = (¢h, jh), for ¢,5 =0,1,..., M.
Let Q5 = {zi; : z;; € Q} and I, = {z;; : z;; € 0Q}. We can cover
the whole of R? with such a square grid, and will denote it by R3.
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For any function v defined on RZ, we adopt the following notation:
forz € RZ and I = 1,2,

v (z) = v(z £ hey), vTH7I(z) = v(z + hes — hey),

and

__v(z + hey) — v(x)
h Y

v(z) —v(z — hel)’

Viv(z) = -

where e; is the [-th unit vector in R2.
The Steklov mollifiers are defined in the following manner:

S = S1S; with S = S;FS;, 1=1,2,

where
1 0
Sto(z) = j é(z + sher)ds, Sy é(z) = / é#(z + sher) ds.
0 -1

The operators S,i commute, and the following relations hold

0 1
S52¢(z) = /_1(1 + 8)é(z + shey)ds +/0 (1 - s)¢(z + she;) ds,

and

a _
(2.1) St =—— = V4, S,"—a¢ =Vé.
T

Let D, denote the mesh functions defined on R? which vanish out-
side of Q. For u,v € D), we now introduce the discrete L? space,
denoted by L%(Q}), with inner product and norm given by

(w,v) = h? Z w(z)v(z),

zemﬁ

llwllo,p = (w,w)%,
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respectively. Further, let H} = H}(Q3) denote the discrete analogue
of the H'-Sobolev space with norm |[w|i2 , = ||lw][ ; + S Vw2
We also introduce a discerete H2-Sobolev space with norm

2
lollz = lhollfa+ D IViVqwl§p, w € Ds

lg=1

and denote it by HZ = HZ(Q).

Whenever there is no confusion, we write ||w|| and |jwl};, for j = 1,2,
in place of ||w|lo,x and ||w||; s, respectively. Throughout the paper,
Il liz2 and || - ||wm.» () Will denote the norm in the L? and the Sobolev
space W™P(Q), respectively. Further, | - |m.p(q) denotes the semi-
norm on W™?({2). In particular, for p = 2, we denote W™?(2) by
H™(%) .

For functions v and w which vanish on 9%}, the following identities
are easy consequences of summation by parts:

(2.2) (Viv,w) = —(v, Viw), =12

The basic lemma, which will be used in the following sections, are
given below. Along with the Bramble-Hilbert Lemma(see, Bramble ‘
" and Hilbert[1] and Dupont and Scott[4]), the following bilinear version
of it will be needed for our convergence analysis. For a proof, we refer
the reader to Ciarlet[2].

LEMMA 2.1. Let By, be the set of all polynomials of degree < [r],
where [r] denotes the largest integer less than r > 0. If 5 is a bounded
bilinear functional on W*?(Q) x WA4(Q), with a,8 € (0,00) and
P, q € [1,00] such that

n(U,v)=0, = VU €Py(R), VveWrYQ),

7(u, V) =0, Yu € W*P(Q), VYV € Pg(Q),

then there exists a positive constant C such that

[ 7(u,v) |< C | u |lwas(e)| v lwe.e@)
Yu € W*P(Q), Vv e WAIQ).
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We shall frequently use the following inequality
(2.3) ab < ea® + fs-ba a,beR, €>0.

We write C as a generic positive constant independent of the discretiz-
ing parameters h.

3. Discrete Schemes

In this section, the stability and error analysis for a discrete scheme
of (1.1) will be given. Let Ax(z) be the finite difference approximations
for the operators A(z), defined by

Ap(z)V = -

N =

3 [Vi(a(2)V4V) + Vilay(z)V,V)] + S(a(2))V,
l,g=1

for £ € Q;. In order to minimize the regularity imposed on a(z)
in the subsequent analysis, it is necessary to work with the Steklov
mollification S(a(z)) in the above approximations.

Our discrete approximation U on 2, to (1.1) is now defined by

(3.1) Ap(2)U(z) = Sf(=), z € Qp,

U(.’E) =0, z € Oy,
We first consider a modified difference scheme of (3.1); namely,

(3.2) Aw(2)U(z) = Sf(z) + Y _ ViF(=),

=1

where F, defined on 0, vanishes on 9.

Let Hy, = {v € Hj : v = Oon 3Q}. On the basis of the as-
sumptions imposed on A(z), the following lemma can be verified using
summation by parts.
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LEMMA 3.1. For V,W € H(}’h, we have the following inequalities:
(1) the discrete Poincére inequality: ||V < CEL] IViV||3,
(2) (A(OV.V) 2 ol VI3,
where ¢g is a positive constant.

The stability analysis will be formulated in the discrete norm.

THEOREM 3.1. Let U be a solution of (3.2). Then there exists a
constant C such that

Tl < clIssl + IF]-

Proof. Forming the discrete L? inner product between (3.2) and U,

we obtain
2

(An(2)U,U) = (Sf,U) + Y _(ViF,U).

=1

Using Lemma 3.1, we obtain
Uit < ClIsANUN + IIEMU.]-

An application of the inequality (2.3) now completes the proof. [

Using Theorem 3.1, we now derive the followiﬁg error estimate in

e(z) = u(z) — U(x).

THEOREM 3.2. Let u and U be the solution of (1.1) and (3.1),
respectively. Then the error e(z) = u(z) — U(z) satisfies the following
estimate

fle(z)llh < CROT, l<a<s.

Proof. From (1.1) and (3.1), it follows that
Ap(z)e = [An(z)u — SA(z)u] = Gyi(z).

Following Jovanovié et al. [6], the integrand G1(z) is rewritten as

2
Gi(z) = Y Vimy() +1(2),

Lg=1
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where 1, 2, .3, @
Ulq—nlq +771q +mq +n1‘1
with
) + o2 Ou + o2 + g2 Ou
T,Iq Sl 53—1 (alq'é‘;;) — (SI 53-—1(11q) (SI 53—1'6—1:_;)1
12 = [5153 s~ g + 2] (5753 2),
5 _ 1 Ou _1 Y
77§q) - §(an +af ) [S’+S3 '6 -2-(un+un+1)] )
1
e = =g lo1 = af)) (Vou = Tqut),
and

n = (Sa)u — S(au).

To estimate n, we first note that

n = (Sa)(u — Su) + (Sa)(Su) — S{au).

63

As in Pani et al[9], the Bramble-Hilbert Lemma along with Lemma

2.1 yields

()il < C(llall Lo (wa-r.00)) R ||u(2)l[Ha(a)y, 1< <2

And we obtain the following estimate for n;, as in Jovanovié et al. [6)

2
D lmg(@)* < CRO Yju(z)||gacey, 1<a <3,
lg=1

where the constant C' depends on max;,q |[jaig|| L= (wa-1,). Theorem

3.1 now completes the proof. O

We now derive the L2-error estimates with order of convergence com-
patible with the regularity on the generalized solution u with reduced

regularity.
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THEOREM 3.3. There exists a constant C, which depends on u,
such that
llell + Rllels £ CR%, 1<a<2

Proof. For the estimation of ||e]|1, we take the discrete inner product
of (3.1) with e and obtain

(Ane,e) = (Apu — SAu, e) = (Gy,e€).
Using the estimate for G; from Theorem 3.2, we obtain
(G1,e)| < Ch*Yellgs, l<a<2.

Here the constant C depends on |ju||g2(q), maxiy | aig |wi.~, and
la|w1.«. Now from the coercivity of the operator A, the required
estimate follows for ||e[;.
For the discerete L? estimate, we define @ as the solution of
Ap® =e¢, z € Qp,

(3.3) $ =0, z € Q.

Because of the coercivity of Ap, ® is a unique solution of (3.3) with
appropriate regularity

(3.4) 8llz < Cllell-
Forming the discrete inner product between (3.3) and e, we find that

(3.5) (6, e) = (Ahe, @) = (Ahu - SAu,@)
= (G4, ®).

For the estimation of Gy, we decompose G, as in Theorem 3.2, and
obtain, with an application of Lemma 2.1,

2
Z (771(;)’ VIQ)

Lg=1

2
< Ch® (Z |aquW1,oo(Q)) [uchx(Q)"@”l, l<a<2
I

=1
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For the estimation of 212 g=1 (7]5‘13 ), V.®), we consider it term by term.
Forl=1,q=2,

Ou 1

_ 1
(Vau + V2u+), 5(012 + afz)V1¢>

- 1 _ 1
= <V2 [.S'l+52 u - §(u -+ uth 2)], -2-(a12 + aizl )V]‘P> .

Here, we have used (2.1) and Vju = Vju(z — e;h). The application of
(2.2) yields

1 oy o (]
(03, V1@)| = <s;r52 u—s(u+utt ), Vo 5arn + aff )v1@)>
1
<C|ISTS7u— 5(u+ w12l

Since S7 Sy u — 2(u + u™~2) vanishes for all u € Py, an application
of the Bramble-Hilbert Lemma yields

5 S5 — 5(u w2 < CHJulneca).

The estimator for (qg), V1) is obtained in a similar manner.
Forl=1,q=1,

Su
<n§:‘i)avl(p> = <STS§5‘;

1
= <V1(S§u —u), 5((111 + a;’f)Vl ¢>

1 - 1
- ‘2‘(V1u + Vyiuth), '2'(011 + a;rxl)vlq’>

= (-0, 31 ((en + aff 729 ).

Since SZu — u vanishes for all u € P;, an application of the Bramble-
Hilbert Lemma again yields

|0, v12)| < Cholulyecali®ls, 1<a<2.
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The estimate for (ng) , V2 @) is obtained in a similar manner.
Using Lemma 2.1, we can derive the following estimates

2 2
3" (0P, vie)| < Cr? Y laylwe llullga-1 ()| Bll2,
Lg=1 Lg=1

2 2
Y (D, Vid)| < CR( Y latglwa-1.0)ulme @l ®ll2,

lLg=1 l,g=1

and from the Bramble-Hilbert lemma we obtain

[{n,®)| < [{(Sa)(u ~ Su) + (Sa)(Su) — S(au), )]

< Ch*[Jalpe (@) ul=(0) + |alwa-r.oo@)lulme-2 @) 18],
l<a<2

It therefore follows that
(G2, ®@)| < Ch®||®||2.
Using the regulé.rity condition ’(3.4)“, we obtain
lell < Ch%fullga)y, 1<a<?,

with C depending on |a|wa-1.0(g) and max;<i 4<2 [|aigllwe-1.-(@)-
This completes the proof of Theorem 3.3. O
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