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THE CONVERGENCE OF FINITE DIFFERENCE
APPROXIMATIONS FOR SINGULAR
TWO-POINT BOUNDARY VALUE PROBLEMS

H. Y. LEE, J. M. SEONG, AND J. Y. SHIN

ABSTRACT. We consider two finite difference approximations to a
singular boundary value problem arising in the study of a nonlinear
circular membrane under normal pressure. It is shown that the
rates of convergence are O(h) and O(h?), respectively. An iterative
scheme is introduced which converges to the solution of the finite
difference equations. Finally the numerical experiments are given

1. Introduction

In the study of a nonlinear circular membrane under normal pressure
[3,4], the following singular boundary value problem arises:

3 2 '
—y”—;y'-—;z-zﬂ, 0<z<l,

(1.1)
y(0)=0, ¥'(1)+(1-v)yl)=0, 0<v<l,

where v, 0 < v < 1, is a constant. The existence of a unique positive
solution of (1.1) has been discussed by [2,3,4,9]. Numerical solutions
of this problem can be obtained by the iterative method [2] and nu-
merical techniques [4] on the integral equation equivalent to (1.1). It is
mentioned in [4] that because of singularity and the nonlinearity, diffi-
culties are encountered if numerical solutions of (1.1) are attempted by
finite difference methods. In [8], a finite difference method to a class
of singular boundary value problem is introduced.

When the boundary condition at z = 1 is y(1) = A(> 0) instead of
v (1)+ (1 -v)y(1) = 0, the unique existence of a positive solution and a
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numerical solution are studied by [2,3,4,7,8,9]. In [7], a finite difference
approximation to (1.1) is introduced whose rate of convergence is O(h?)
and which may avoid the above difficulties stated in [4]. And the global
error estimate O(h?) is better than one in [g].

In this paper, motivated by the method in [7], two finite difference
approximations to (1.1), scheme I and scheme II, are considered. The
rates of convergence are O(h) and O(h?), respectively and both meth-
ods may avoid the difficulties stated in [4]. To obtain the solution
of each finite difference equation, an iterative technique is introduced
which converges monotonically to the solution of the finite difference
equation. In section 2, some preliminaries are given. In section 3, two
finite difference approximations, scheme I and scheme II, are intro-
duced, and an iterative technique is given which converges monotoni-
cally to the solution of the finite difference equations. In section 4, we
prove analytically that the rates of convergence of the scheme I and the
scheme II are O(h) and O(h?), respectively. The rates of convergence
of scheme I and scheme II are verified numerically in section 5.

2. Preliminaries

To discuss the behavior of the solution of (1.1) at z = 0, we begin
with the following lemma whose proof is straightforward.

LEMMA 2.1. Let f € C[0,1] and f' € C(0,1]. Ile_i}r(l)l_i_ f!(z) exists,
then
fi(0) = lim Mz lim f'(z),

z—0+ z—0+
which implies that f'(z) continuous at = = 0.

It was shown in [9] that there exists a unique solution Y € C?(0,1]n
C'[0,1] of (1.1). Thus the following lemma is obtained from Lemma
2.1 and the fact that

r __L/zﬁ
Y(z) = 2/, Y2(s)ds'

LEMMA 2.2 [7]. LetY be a positive solution of (1.1). Then
(1) Y(0) exists and Y"(z) is continuous at = 0.
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(2) Y. ®(0)(= 0) exists and Y () is continuous at z = 0.
(3) Y.14)(0) exists and Y9 (z) is continuous at z = 0.

REMARK. Lemma 2.2 implies that if Y is a positive solution of (1.1}
then Y € C*[0,1].

3. Finite difference approximations
3.1. Scheme I

1
Let N be a positive integer, h = N z;=1h, 1=0,1,2,--- ,N,and

let y; be the approximation of Y(z;),2=0, 1, 2, ---, N. Consider
the following finite difference approximation (scheme I):

T g To
Y-2h+y 2
4-———};2—-—*‘—-“‘1}‘12'—0)
(BLD g =ity 3 Gw—ver 2 _,
he i 2h ¥y
7:= 2,3, ',N-I)
_g}!__l_h:_zjﬁ+(1_v)y1v=0.
Let
T8 -8 0 0 ]
—4 8 -4 0 0
3h 3h
0 —1-(-5—:172' 2 —‘1"2‘:;:‘;
Li=| . 5 RIS 0, |’
0 0 -1+ 2 -1-
2251 2517}\7-_—1
0 0 -1 1+h(1-v)

¥ = (o, %1, - » Yyn-1, yn)%
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and

) 2h2  2K2 2h2 ¢
le: (__2, Ty Ty Ty O) ’
Yo Y Yn-1

where N1y and § are column vectors. Now we have a nonlinear system

where 0 is the zero vector. To solve the nonlinear system (3.1.2), we
use Newton’s method. So, form= 0, 1, 2, ---, we have

(3.1.3) FmtD = gim) _ (Ll + Nl’&(’")) . (Llir‘"‘> + Nu?‘"‘)) :

4h? 4h? 4h?
where N,y is the diagonal matrix, diag [-—3, — O}.
Y% W YN

Therefore, from (3.1.3), we derive
(3.1.4) L;ym+D 4 [N1/5,<m>] Fm+D) [N1r5,<m)] Fm — Ny (™

and

Lig™+D) 4 Npg(m+D)
= N+ — Npgim) _ yr5m) [y(mﬂ) _ 5,(m)]

_ 1 m) [ (,(m+1) _ (m)\?
—§N1”§( )((yjm —Y; ) )

(3.1.5)

12h2  12h2 12h2
where N;"§ is the diagonal matrix, diag [— T — g ,O],
Yo Y1 Yn-1
and 5](-"') is between yJ(-mH) and y](-m) .

THEOREM 3.1.1 [1].
(i) The M-matrix L, is an inverse positive matrix.
(ii) The matrix Ly + N1'§ is an inverse positive matrix for any
y>0.
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Proof. (i) Let D; be the (i + 1)-th leading principal minor of Lj.
Then we obtain

Dy=8, Dy=32 D2=(1+—§£)DI, SR
22
h 3h
Dy_1=1{1+ 3 Dyn_3, Dy=h(1l~v)(1+ ——-—-—) Dn-2,
2TN 1 2rN-1

which imply that the M-matrix L, is an inverse positive matrix.
(ii) Since L, is an M-matrix and N1’y is a nonnegative diagonal
matrix for any ¥ > 0, L; + N;'y is an inverse positive matrix. a

LEMMA 3.1.1. If u satisfies Lyu + Nyu > 0 and | satisfies 1n1 +
Nll S 0, then
1<,

where 0 < u; and 0 < l; fori=0,1, 2, .--, N.
Proof. From the assumptions on u and 1, we have
0< Liu+ Nju— L1l - Ml
=Li(u-1)+ Ny(u-1
= (L1 + N/§)(u -1,

where &; lies between [; and u;. Since L; + N;’¢ is inverse positive,
u — 1 > 0, which completes the proof. d

LEMMA 3.1.2. If u satisfies Lyju + Nyu > 0, y©@ > 0, L;y©® +
Niy©® <0, and {y(™} is given by (3.1.3) or (3.1.4), then

y(O)Sy(l)Sy(Z)SSy(m)SSu for m:()’ 1’ 2’ cee

where 0 < u; for1=0,1,2 ... N.
Proof. It is obvious from (3.1.3), (3.1.5) and Lemma 3.1.1. ]
Let (1~ )2 )
=T y2 2TV
l(x)— [4(2___,0)2]3(3" l_v)i

L = 1(h),i = 0,1,2,--- , N,
1= (l07l1a12’ ';lN)t1
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where h = % Then it is easy to show that 1 satisfies L1 + Ni1<0.
And let

_ (1—v)2§ 3—v
u(e) = [ e - 32

u; = u(th),:=0,1,2,--- | N,

u = (up, uq, Uz, -, un)".

)s

Then it is also easy to show that u satisfies L u + Niu> 0.

THEOREM 3.1.2. The system of equations (3.1.2) has a unique pos-
itive solution.

Proof. The system of equations (3.1.2) has a positive solution from
Lemma 3.1.2 and the above remark. Suppose that y and w are positive
solutions of the system of equations (3.1.2) and z = y — w. Then we
have

le + le — N1W =0.

So we obtain
(Ll -+ N1/§) zZ = 0,

where &; is between y; and w;. Since L; + Ny’ € is an inverse positive
matrix, z = 0 and hence y = w. O

3.2. Scheme II

Using the same notations as given in the beginnig of Section 3.1, we
consider the following finite difference approximation (scheme II):

— 2
_8_3/1 Yo

-— = 0,
h? vé
Y2—2y1+y 2
—4q RTENTH 2
h? y3
(321) _¥i+1—2%tyia 3 Y-y 2 _
h2 z; 2h y? ’

i=2,3 -, N-1,

2yn—1—2yn 2 3 2
~DINSLT AN L 2 (1 -v)yy — = =0.
v + h( v)yn + xN( V)YN 7z



Convergence of finite difference approximations 305

Let Lo be the same matrix as the matrix L; in section 3.1 except
the n-th row and let the n-th row of L be 0,0,...,0,—-2,2+2h(1 —v)
+3h%(1 —v). Let

S’: (yO) Y1, ***y YN-1, yN)ta
and ‘
3 2h2  2h2 2n2  2m?\’
Ny ={—-—5 =3 s =5 ==} »
Yo Yi Yn-1 Yn

where N,y and ¥ are column vectors. Now we have a nonlinear system
(3.2.2) Loy + Noy = 0,

where 0 is the zero vector. So, for m =0, 1, 2, ---, we have
-1
(3823) 7 =5 — (Ly+ M'7™) - (Log™ + Nag™).

' K2 4h?  4B2 2
where Ny'y is the diagonal matrix, diag[?—a, %, é’%—, ceey %]

W Yi ¥ Yn
Therefore, from (3.2.3), we derive

(3.2.4) Log™+V) 4 [N2'9<m>] Fim+1) — [Ng’Sr("‘)] F(m) — Nog(m)

and

Loy D 4 Npy(m+h)
(3.2.5) = Moy ™) = Npg ) — Ny [gmtD) — o]

1 m 2
=3 Npe(m) ((y§m+1) _ y§m)) ) ’
2 2 9
where Ny"y is the diagonal matrix, diag [_ }_2_;’_., __1%’ - 12‘? ] ’
Yo Yi YN

and Ej(fm) is between y§m+1) and yyn) .
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THEOREM 3.2.1 [1].

(i) The M-matrix Ly is an inverse positive matrix.
(ii) The matrix Ly + No'y is an inverse positive matrix for any
y>0.
Proof. (i) Let D; be the (i + 1)-th leading principal minor of Ls.

Then we obtain

D0=8) D1=327 D2=(1+_3"’l)D17 Ty
2.’172

Dy = {2h(1 —-v)+ 3h2(1 - v)} . (1 + 3h ) Dpn_o,
2rN_1

which imply that the M-matrix Ly is an inverse positive matrix.
(ii) The proof is the same as that of Theorem 3.1.1. O

LEMMA 3.2.1. If u satisfies Lou + Nau > 0 and 1 satisfies Lol +
N31 <0, then

1< u,
where 0 < u; and 0 < l; fori=0,1, 2, ---, N.
Proof. The proof is similar to that of Lemma 3.1.1. ]

LEMMA 3.2.2. If u satisfies Lyu + Nou > 0, y(@ > 0, Loy©® +
Noy©® < 0, and {y(™} is given by (3.2.3) or (3.2.4), then
yO<yW<yP<..<cy™M<.i<u, for m=0,1,2, -,

where 0 < u; fori=0,1,2,---, N.
Proof. 1t is obvious from (3.2.3), (3.2.5), and Lemma 3.2.1. O

Let a )2
=Y e 270
l(m) - [4(2 _v)2] (l’ 1 '_"U),
I; = 1(ih),i = 0,1,2,--- , N,

1= (l07l1,l27 ) lN)ty
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where h = 4. Then it is easy to show that 1 satisfies Lyl + N21 < 0.
And let

(=23, 3-v
wz) = [ 16 Ty A
u; = u(ih),i = 0,1,2,-, N,

u = (ug,us,uz, -+ ,un)".
Then it is also easy to show that u satisfies Lou + Nou > 0.

THEOREM 3.2.3. The system of equations (3.2.2) has a unique pos-
itive solution.

Proof. The proof is similar to that of Theorem 3.1.3. a

4. The convergence of finite difference approximations

4.1. Scheme 1
LEMMA 4.1.1 [5,7] Let Q(.’L‘,) = Qq: and E(CL‘,) = FE; be dis-

crete functions defined on gy, x1, Z2, -+, Tn. Assume that there
exists an w > 0 such that
Q<—w<0, i=0,1,2, ---, N-1

SetC=max(£,-——1—
w1

). At the grid points xg, T1, T2, ***, TN

define a difference operator L} by

E, - E
(411)  L}Eo=8- =15+ QuEy,
Ey—2E, +E
(412) L}Ey=4. 2572 + QB
Eiy1—2E;+E;w 3 Ey—-Ei,

1. Lh ;= as — ———— L

(4.1.3) L}E » +xi oh + Qi B,
i=23 -, N-1,

(414) LMEy= gﬁlhg’i‘—l +(1—v)Ey.

Then
|E;] < C- max |L4E;|, i=0,1,2, .-+, N.
0<ji<N
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Proof. Note that C' > 1. If max |F;| occurs for i = N, then

|En| < —ILhEN|
Suppose that max |E;| occurs for one of i =0, 1, 2,---, N —1. Then
from the proof of Lemma 4.1 in [7], we have
4
L B < S L2
LjSN-1 w 0< <N 1
Thus the proof is completed. O

THEOREM 4.1.1. Let Y(z) € C%0,1] be an analytic solution of
the boundary value problem (1.1). Let y;, i =0, 1, 2, ---, N, be
numerical solutions of L1y + N1y = 0 and E; = Y (x;) — y; be errors.
Then

|E;| < CMyh,

where
4

pry and C is a constant.
T

My =sup
[0,1]

Proof. By the mean value theorem and Taylor theorem, we obtain

n 2
(4.1.5) T
o Y(z1) — Y(x0) 2 @ _ 22_
TR e U @3
where g < €y < x1. For z;, we have
" 3 ! 2
0=Y"(z;) + ol Y'(z1) + V@)l
2
— 4Y// 3 YI/ _ YII
oo () +3076) ~ Y@ + o2
_ 4. Y(@) - 2Y’52x1) +Y(z0) % [Y(4)(770) + Y(4)(m)]

+3YW(&) - &1(& — 1) + [T,(—jW’
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where 7o < 7mg < T1 <M < T2, Top < &0 < & <z, and Tg < & < &;.
Andfori=2,3,4,---, N-1,

(417) .
YII i _— Yl T;
@)+ 5 Ve + o
_ Y(@is1) = nwm+ywho 3 Y@wQ—Y@PQ
h2 x, 2h
- romrom)] -2 [y
2
Y@

Y(:z:,+1) 2Y (z;) + Y(:El_l) 3 ) Y(zis1) — Y(zi-1)
h? .’l?i 2h

2 ) O
-5 v e + e - o0+ g )

L2 K
Y(@)? 24

[YOmo) + YD),

where z; .3 <o < T; <M < Tit1, Ti-1 < <<z < <bhH <
Tip1, To < €4 < z; . And for zy, we obtain

0=Y'(zn) + (1 - v)Y(zn)

W9 Y = Yawa) | (1 yyy(ey + By(e

where zx.1 < & < zn. From (3.1.1), (4.1.1), and (4.1.5) we obtain

By - B h?
o+ QoBo = YO (&) - -

From (4.1.2) and (4.1.6), we get
4 By —2E; + Ey
TR

h2
= —6—— [Y(4)(770) + Y(4)(771)] - 3Y(4)(€2)£1(§O _ 271)-

LYEy=8-

L'E, = + QB
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And, from (4.1.3) and (4.1.7), we have

F;1—2E;,+F; 4 3 Ein—E;
LhE, =% v TR i Cn oSl
1 h2 + ZX; 2h
h2

Z;

From (4.1.4) and (4.1.8)

En — En_ h
LhEy = —N——h—N—l +(1-v)Ey = —§Y"(go),

mmmw=%,@=PW=—i

%
4

between Y (z;) and y;. Let My = sup d—g—
o,1] | 4=

h2
|LnEo| < §M4,

2
|LrLEq| < %M4 + 3h% My,

—L + Q:E;

(4) (4)
=5 [2y(4)(€4) + X_@(&) —z) + }_,_?5.53_)(51 — mi)]

h‘2 4 4
+ o [YOm) +YOm)], i=23 -

., N-1.

3S—cu<0,a.ndu,—lies

. Then we obtain

2
thEil<'h_M4+2h2M4, 122, 3, cee N -1

12
h
|LhEn| < -2-M4.

Thus, by Lemma 4.1.1, we have

|E;| < CMyh, for i=0,1,2,---, N,

which completes the proof.
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4.2. Scheme 11
LEMMA 4.2.1. Let Q(z;) = Qi, E(z;) = E; be discrete functions

defined on g, 1, x3, '--, Tx. Assume that there exists an w > 0
such that
Qi<-w<0, 2=0,1,2,--., N.
Set C = max fl—, 1 . At the grid points zo, 1, T2, *++, TN
w’ 2(1—-v)
define a difference operator L} by
(4.2.1) LYE; = L'E;, i=0,1,2 -, N-1,
2EN_1—-2ENy 2 3
(422) LBy = =02 22N 2 ) Ey——(1-0)Exn+QNEN.
h h N
Then
5 5 O |, mae VLB, WISEWI|, i=0,1, 2, o,

Proof. Note that C > 1. If max |E;| occurs for i = N, then

h
|En| < s——|LEEN]|.

~2(1-v)
Suppose that max |F;| occurs for one of i =0, 1, 2, ---, N —1. Then
since L*E; = LQ“Ei, t=0, 1, 2,;:, N — 1, the remaining part of the
proof is the same as that of Lemma 4.1.1. O

Since Y(x) € C*[0,1] and Y (1) > 0, we may extend the positive
solution of (1.1) to the interval [0,1 + 6}, for sufficiently small § > 0.
So we have the following theorem whose proof is the same as that of
Theorem 4.1.1.

THEOREM 4.2.1. Let Y(z) € C*[0,1 + &), be an analytic solution
of the boundary value problem (1.1) for sufficiently small § > 0. Let
yi be numerical solutions of Ly§ + Noy = 0 and E; = Y(x;) — y; be

errors, wherei =0, 1, 2, ---, N. Then
IE’Ll S CM4h2>
where .
My= sup |——| and C is a constant.
*7 oty | dat
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Proof. From (1.1), by the mean value theorem and Taylor theorem,
we obtain

2

¥ (zn))”
(423 = YENa)- 2Y}(L§N) +¥EN-1) g v)%Y(xN)

TR — r [Y(4)(?70) + Y(4)(771)] :
[Y(zn))? 24
where zn_1 <10 < ZN <M1 < Zn+1. And we obtain
(4.2.4)
Y(zni1) —Y(zN-1)
2h

where zy_1 < & < zn < &1 < Tn41- By substituting (4.2.4) into
(4.2.3), we get

0=Y"(zn) + 3 Y'(zn) +
TN

@) @)
- —é‘[Y (éo) + Y (&1)] =0,

+ (1 - U)Y(.’DN)

0 2Y(x1v-121; 2Y(zn) %(1 — )Y (zn) + g[Qy(4)(§4)
(4.2.5) + YD (&) (6o — 2n) + YD (&)(6 —an)] + [Y(:fN)]z‘

B @ ) + Y@ 1—o)2y
—521'[ (m0) + Y*¥(m)] - ( —U);,; (zN),

where Ty < €3 < TN+1, To < €4 < zn. Therefore we have
2FENn.1—2ENn 2 3
LhEy =" 2% (1 ——(1—-v)E FE
2 BN %) h( v)En GJN( v)En + QNEN
h
= 3 [ + YO (@) (6 — am) + Y (E) (6 — an)]

h2
+ ﬁ[Y“) (no) + YW (m)),

2 4
where F(y) = 7 Q; = F'(pi) = By < —w < 0, p; lies between

Y(x;) and y;. Since L}E; = L?E;, i =0, 1, 2, -, N — 1, we obtain
from the proof of Theorem 4.1.1

|LAE:| < CMyh?i=0,1,2,---, N-1
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and from (4.2.5) we get

2h2 4.7 -
|L5EN| < [E + gh] My,
—~ 4 V' '
where My = sup |—=| for sufficiently small § > 0. Thus, by Lemma
(0,144 | & -

4.2.1, we have
|E;| < CM4h?, for i=0,1,2 ---, N,

which completes the proof. a

5. Numerical experiments

5.1. Scheme I
The scheme I, proposed in section 3.1, has been implemented on an
IBM PC. In the computation, we use

K+ (e N — (B (. - 12
_omax [1(z;) ~y®(e,)| < TOL =10 10

to stop the iterétion when we solve the nonlinear system (3.1.2) by
Newton’s method (3.1.3) or (3.1.4). In table 1, we report the values of
Smax(IN) and Smin(N) for N = 10, 20, 40, 80 and v = 0.1, where

) lyan(z;) — yn(z;)}
Smin(N) =
min(N) =00 N lyan () — yon(z;)]

and yn represents the solution of the nonlinear system (3.1.2) for the
given N. And in table 2, the value of dpax(N) and dmin(INV) are given
for N = 10, 20, 40, 80 and v = 0.9. From table 1 and table 2, we see
numerically that Theorem 4.1.1 is valid.
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Table 1. dmax(N), dmin(N) for N = 10, 20, 40, 80 and v = 0.1

N [ Snax®) [ Sn(™)

10 2.109554 2.059469
20 2.055978 2.033158
40 2.028407 2.017376
80 2.014309 2.008876

Table 2. dmax(N), dmin(N) for N = 10, 20, 40, 80 and v = 0.9

N Omax(N) Omin(NV)

10 2.036283 2.034866
20 2.017864 2.017137
40 2.008664 2.008500
80 2.004415 2.004234

5.2. Scheme I1

The scheme II, proposed in section 3.2, has also been implemented
on an IBM PC. In the computation, we use

k1) (o N (K (o T _ —12
jomax, v (z;) —y'"™(z;)| <TOL=1.0x 10
to stop the iteration when we solve the nonlinear system (3.2.2) by
Newton’s method (3.2.3) or (3.2.4). In table 3 we report the values of
Omax(IV) and Omin(N) for N = 10, 20, 40, 80 and v = 0.1, where

bon(N) = max |lyan (25) — yn(z;)] ’
j:Oala"'7N |y4N(m]) - y2N($.7)'

6min(N) = . min ,y2N(mj) - yN(:E])l
j=0,1,---,\N |y4N(£L‘j) — y2N(-'17j)|

and yn represents the solution of the nonlinear system (3.2.2) for the
given N. And in table 4 the value of §yax (V) and dpmin (V) are given
for N =10, 20, 40, 80 and v = 0.9. From table 3 and table 4, we see
numerically that Theorem 4.2.1 is valid.
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Table 3. dmax(N), Omin(N) for N = 10, 20, 40, 80 and v = 0.1

10 4.785150 3.386142
20 4.214163 3.845060
40 4.054849 3.961117
80 4.013797 3.990280

Table 4. Smax(N), Smin(IV) for N = 10, 20, 40, 80 and v = 0.9

10 3.988212 3.767755
20 3.997707 3.962608
40 3.999464 3.990738
80 3.999965 3.997585
References

315

A. Berman & R. J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, SIAM, Philadelphia, 1994.
E. Bohl, On two boundary value problems in nonlinear elasticity from a nu-
merical viewpoint (R. Ansorge, W. Toring, 1-14, ed.), In: Lecture Notes in
Mathematics No. 676, Springer, Berlin, 1974.
A. J. Calligari & E. L. Reiss, Nonlinear boundary value problems for the circular
membrane, Arch. Rat. Mech. Anal. 31 (1970), 390-400.
R. W. Dickey, The plane circular elastic surface under normal pressure, Arch.
Rat. Mech. Anal. 26 (1967), 219-236.
D. Greenspan & V. Casulli, Numerical Analysis for Applied Mathematics, Sci-
ence, and Engineering, Addison-Wesley Publishing Company, New York, 1988.
B. Gustafsson, A numerical method for solving singular boundary value prob-
lems, Numer. Math 21 (1973), 328-344.
H. Y. Lee, M. R. Ohm and J. Y. Shin, A finite difference approzimation of a
singular boundary value problem, Bull. Korean Math. Soc. (accepted).
R. N. Sen & Md. B. Hossain, Finite difference methods for certain singular
two-point boundary value problems, Journal of Computational and Applied
Mathematics 70 (1996), 33-50.



316 H. Y. Lee, J. M. Seong, and J. Y. Shin

[9] J. Y. Shin, A singular nonlinear boundary value problem in the nonlinear cir-
cular membrane under normal pressure, J. Korean Math. Soc. 32 (1995), no. 4,
761-773.

H. Y. Lee, J. M. Seong
Department of Mathematics
Kyungsung University
Pusan 608-736, Korea

J. Y. Shin

Division of Mathematical Sciences
Pukyong National University
Pusan 608-737, Korea



