• Title/Summary/Keyword: Die Deformation

Search Result 560, Processing Time 0.026 seconds

Finite Element Analysis for Extrusion of Hollow Shaped Section Through Square Die (평금형을 통한 중공형재 압출의 유한요소 해석)

  • Lee, Chun-Man;Lee, Seung-Hun;Jo, Jong-Rae
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.375-381
    • /
    • 1998
  • This paper presents development of finite element simulation program and analysis of hot extrusion through square dies with a mandrel. The design of extrusion dies is still an art rather than science. Die design for a new extrusion process is developed from through in-plant trials. In the present paper, a three-dimensional steady-state finite element simulation program is developed. Steady-state assumption is used for both the analyses of deformation and temperature. The developed program is effectively used to simulate hollow extrusion of several sections. Distributions of temperature effective strain rate, mean strain rate and mean stress are studied for an effective design of extrusion dies.

  • PDF

A structural study on mold EMBO equipment to minimize the influence on the bottom dead center displacement of precision high-speed press (정밀고속 PRESS 하사점 변위량에 영향을 최소화 하는 금형 EMBO 장치에 관한 구조 연구)

  • Kim, Seung-Soo
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.46-50
    • /
    • 2016
  • Laminate products for motor core are developed with a structure in which the importance of quality level and clamping force is influenced by the recent performance and safety of the product. It has been confirmed that the accuracy of the mold is emphasized, and that the accuracy of the tightening force produced by the stacked product for the motor core is greatly influenced by the change in the bottom dead center displacement of the aged high speed press. The reason why setting the mold, and test the effect of bottom dead center of high speed press is to improve product pull force in embossing process at mold. We have applied the system to minimize the effect on the damping displacement under the dynamical degree of the equipment by applying the emboss complement device which can test the influence and complement in the process.

Finite Element Method on Die Deformation and Elastic Spring-Back Analysis for Product of Helical Gear (헬리컬 기어의 금형변형 및 탄성회복에 대한 유한요소해석)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.237-240
    • /
    • 1999
  • The elastic stress analysis of the die for helical gear forging has been calculated by using the nodal force at the final stage obtained from the rigid-plastic finite element analysis. In order to obtain more precise gear products. the elastic analysis of the die after release of punch and the elastic spring-back analysis of product after ejection have been performed and the final dimension of the computational product has been in good agreement with that of the experimental product.

  • PDF

Densification behavior of metal powder under warm isostaic pessing with metal mold (금속 몰드를 이용한 금속 분말의 온간 등가압 성형)

  • Park, Jung-Goo;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1352-1357
    • /
    • 2003
  • The effect of the metal mold on densification behavior of stainless steel 316L powder was investigated under warm isostatic pressing with metal mold. We use lead as metal mold and obtain experimental data of metal mold property. To simulate densification of metal powder, the elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under warm die pressing and warm isostatic pressing with metal mold. Finite element results were compared with experimental data for densification and deformation of metal powder under warm isostatic pressing and warm die pressing.

  • PDF

An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel (6061 알루미늄합금 휠 단조공정의 해석)

  • 김영훈;유태곤;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

A Characteristics of Bending Deformation in HallowRectangular Tube by Press Die (중공 각재의 프레스 굽힘 변형 특성)

  • Lee, H.Y.;Kim, K.S.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.285-288
    • /
    • 2007
  • In the recent years the using of low-density material such as high-strength Al alloy on the various industries is becoming light-weight. High strength and hollow Al alloy is good material for stiffness and recycling. Therefore the advanced manufacturing technology with Al alloy is continuously required in many industrial fields. In this study simplified hallow rectangular section of Al alloy is analyzed by FE analysis. Bending stress is affected punching and rotating of wing-die. The analysis of press bending is preformed at first. The elastic recovery value of component and stress distribution acting from the result of the bending angle of three types were obtained. The designed precesses were analyzed by the commercial FE code, Deform-3D. Forming dies for each process were designed and prototypes were manufactured by the verified forming process. Some of the important features of design parameters in the press bending were reviewed.

  • PDF

A Study on the Press Forming by Rectangular Tube of Al6063 Alloys (Al6063 합금 중공각재 튜브에 의한 프레스 성형 연구)

  • Lee, Choung-Kook;Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2011
  • In this study, a method for the press forming of rectangular aluminium tube has been proposed. Rectangular aluminium tube has high stiff as the cold steel which can be lighter over 30% weight. It is increased every year by being recycled over 80%. Press die consists of punch, wing-die and holder for aluminium tube bending. When punch is applied with aluminium tube, holder is operated as same punch and wing-die is rotated through hinge. Stress-strain relations and springback are considered by bending angle of aluminium tube. In this study, the behaviors on tubes of square aluminium and rectangular aluminium with different thickness and area are established by the analysis of $DEFORM^{TM}$-3D program. Reducing fuel consumption is expected by using the aluminium tube deformation and it becomes the lightweight through recycling.

Lengthening of Hot Forging Die Life for Flange Yoke Forming (플랜지 요크 성형용 열간단조 금형의 수명 연장)

  • 김세환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.1
    • /
    • pp.36-41
    • /
    • 2003
  • The purpose of this study was to find a way to lengthen the life of hot closed forging die. The fluid interpretation on the plastic deformation of billet of billet was performed by finite element method. And design modification on the impression shape was also performed. The defaced part on the impression surface was mended by the developed build-up welding method. The die life was 3,000 units but alter the procedure it was lengthened up to 5,000.

  • PDF

Pressure-Dependent Yield Model for Metallic Powder Mixtures and Their Densification Behavior During Die Compaction as Analyzed by the Finite Element Method (금속분말 혼합체의 압력의존 항복모델과 유한요소법을 이용한 금형압분 공정 시 고형화 해석)

  • Yoon, Seung Chae;Kim, Taek-Soo;Kang, Seung Koo;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.567-572
    • /
    • 2009
  • The densification behaviors of mixtures of copper and steel powders during cold die compaction were investigated. We proposed the pressure-dependent yield function based on the rule of the mixtures of each yield function of a critical relative density type. The constitutive equations were implemented into a finite element program (DEFORM2D) to analyze the densification and deformation behavior of powder mixtures, and the simulated results are in good agreement with the experimental results in reference studies.

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.