Pressure-Dependent Yield Model for Metallic Powder Mixtures and Their Densification Behavior During Die Compaction as Analyzed by the Finite Element Method

금속분말 혼합체의 압력의존 항복모델과 유한요소법을 이용한 금형압분 공정 시 고형화 해석

  • Yoon, Seung Chae (Research & Development Team Danjin Works, Hyundai HYSCO) ;
  • Kim, Taek-Soo (Department of Eco-Materials and Processing, Korea Institute of Industrial Technology (KITECH)) ;
  • Kang, Seung Koo (Shinhandiamond Industrial Company) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 윤승채 (현대 하이스코 기술연구소) ;
  • 김택수 (한국생산기술연구원) ;
  • 강승구 (신한다아이몬드 차세대연구팀) ;
  • 김형섭 (포항공과대학교 신소재공학과)
  • Received : 2009.04.08
  • Published : 2009.09.25

Abstract

The densification behaviors of mixtures of copper and steel powders during cold die compaction were investigated. We proposed the pressure-dependent yield function based on the rule of the mixtures of each yield function of a critical relative density type. The constitutive equations were implemented into a finite element program (DEFORM2D) to analyze the densification and deformation behavior of powder mixtures, and the simulated results are in good agreement with the experimental results in reference studies.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. Y. S. Kim and M. J. Verrilli, J. Kor. Inst. Met. & Mater. 33, 525 (1995)
  2. D. Raabe and U. Hangen, Acta Mater. 44, 953 (1996) https://doi.org/10.1016/1359-6454(95)00239-1
  3. J. S. Song and S. I. Hong, J. Kor. Inst. Met. & Mater. 39, 778 (2001)
  4. S. Ohsaki, K. Yamazaki, and K. Hono, Scripta Mater. 48, 1596 (2003) https://doi.org/10.1016/S1359-6462(03)00162-3
  5. W. J. Kim and Y. K. Sa, Scripta Mater. 54, 1391 (2006) https://doi.org/10.1016/j.scriptamat.2005.11.066
  6. B. H. Lee, K. S. Shin, and C. S. Lee, Mater. Sci. Forum 475- 479, 2927 (2005) https://doi.org/10.4028/www.scientific.net/MSF.475-479.2927
  7. H. S. Kim and D. N. Lee, J. Kor. Inst. Met. & Mater. 30, 37 (1992)
  8. K. T. Kim and J. H. Cho, Inter. J. Mech. Sci. 43, 2929 (2001) https://doi.org/10.1016/S0020-7403(01)00062-5
  9. F. F. Lange, L. Atteraas, F. Zok, and J. R. Porter, Acta Mater. 39, 209 (1991) https://doi.org/10.1016/0956-7151(91)90269-7
  10. J. Besson and A. G. Evans, Acta Mater. 40, 2247 (1992) https://doi.org/10.1016/0956-7151(92)90143-3
  11. C. D. Turner and M. F. Ashby, Acta Mater. 44, 4521 (1996) https://doi.org/10.1016/1359-6454(96)00064-X
  12. K. T. Kim, J. H. Cho, and J. S. Kim, J. Eng. Mater. Tech. 122, 119 (2000) https://doi.org/10.1115/1.482775
  13. A. Gurson, J. Eng. Mater. Tech. 99, 2 (1977) https://doi.org/10.1115/1.3443401
  14. E. Arzt, Acta Mater. 30, 1883 (1982) https://doi.org/10.1016/0001-6160(82)90028-1
  15. S. C. Yoon, E. J. Kwak, W. H. Choi, H. K. Kim, T. S. Kim, and H. S. Kim, J. Kor. Powder Metall. Inst. 14, 362 (2007) https://doi.org/10.4150/KPMI.2007.14.6.362
  16. S. C. Yoon, E. J. Kwak, T. S. Kim, B. S. Chun, and H. S. Kim, Mater. Trans. 49, 967 (2008) https://doi.org/10.2320/matertrans.MC200724
  17. H. S. Kim, J. Kor. Inst. Met. & Mater. 38, 817 (2000)
  18. S. C. Yoon, H. S. Kim, and C. K. Rhee, J. Kor. Powder Metall. Inst. 11, 341 (2004) https://doi.org/10.4150/KPMI.2004.11.4.341
  19. C. Suryanarayana and G. E. Korth, Met. Mater. Int. 5, 121 (1999) https://doi.org/10.1007/BF03026041