• Title/Summary/Keyword: Diagnostic algorithm

Search Result 423, Processing Time 0.02 seconds

Computer Simulation for X-ray Breast Elastography (X선 유방 탄성 영상을 위한 컴퓨터 모의 실험)

  • Kim, Hyo-Geun;Aowlad Hossain, A.B.M.;Lee, Soo-Yeol;Cho, Min-Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • Breast cancer is the most frequently appearing cancer in women, these days. To reduce mortality of breast cancer, periodic check-up is strongly recommended. X-ray mammography is one of powerful diagnostic imaging systems to detect 50~100 um micro-calcification which is the early sign of breast cancer. Although x-ray mammography has very high spatial resolution, it is not easy yet to distinguish cancerous tissue from normal tissues in mammograms and new tissue characterizing methods are required. Recently ultrasound elastography technique has been developed, which uses the phenomenon that cancerous tissue is harder than normal tissues. However its spatial resolution is not enough to detect breast cancer. In order to develop a new elastography system with high resolution we are developing x-ray elasticity imaging technique. It uses the small differences of tissue positions with and without external breast compression and requires an algorithm to detect tissue displacement. In this paper, computer simulation is done for preliminary study of x-ray elasticity imaging. First, 3D x-ray breast phantom for modeling woman's breast is created and its elastic model for FEM (finite element method) is generated. After then, FEM experiment is performed under the compression of the breast phantom. Using the obtained displacement data, 3D x-ray phantom is deformed and the final mammogram under the compression is generated. The simulation result shows the feasibility of x-ray elasticity imaging. We think that this preliminary study is helpful for developing and verifying a new algorithm of x-ray elasticity imaging.

Fault Diagnosis of 3 Phase Induction Motor Drive System Using Clustering (클러스터링 기법을 이용한 3상 유도전동기 구동시스템의 고장진단)

  • Park, Jang-Hwan;Kim, Sung-Suk;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.70-77
    • /
    • 2004
  • In many industrial applications, an unexpected fault of induction motor drive systems can cause serious troubles such as downtime of the overall system heavy loss, and etc. As one of methods to solve such problems, this paper investigates the fault diagnosis for open-switch damages in a voltage-fed PWM inverter for induction motor drive. For the feature extraction of a fault we transform the current signals to the d-q axis and calculate mean current vectors. And then, for diagnosis of different fault patterns, we propose a clustering based diagnosis algorithm The proposed diagnostic technique is a modified ANFIS(Adaptive Neuro-Fuzzy Inference System) which uses a clustering method on the premise of general ANFIS's. Therefore, it has a small calculation and good performance. Finally, we implement the method for the diagnosis module of the inverter with MATLAB and show its usefulness.

Segmentation and Volume Calculation through the Analysis of Blurred Gray Value from the Brain MRI (뇌의 MR 영상에서 번짐 현상의 명암 값 분석을 통한 백질과 회백질의 추출 및 체적 산출)

  • Sung, Yun-Chang;Yoo, Seung-Wha;Song, Chang-Jun;Park, Jong-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.8
    • /
    • pp.815-826
    • /
    • 2000
  • This study is for the segmentation and volume calculation of the white matter and gray matter from brain MRI. In general, the volume of white and gray matter is reduced by contraction of each components in the case of mental retardation which are Alzheimer's disease and Down's syndrome. As results, it is useful for diagnostic and early detection for various mental retardation through the tracing of variation for its volume from the brain MRI. But, until now, it was very difficult to calculate the partial volume of each components existing in some thickness, because MR image was represented by single gray value after scanning by MR scanner. Accordingly, new segmentation algorithm proposed in this paper is to calculate the partial volume of the white and gray matter existing in some thickness through the analysis of the blurred gray value, and is to determine the threshold for segmentation of white and gray matter, and is to calculate the volume of each segmented component. And finally, proposed algorithm was applied the models which was created manually, and then acquired results was compared with that of original model.

  • PDF

Adaptive Processing Algorithm Allocation on OpenCL-based FPGA-GPU Hybrid Layer for Energy-Efficient Reconfigurable Acceleration of Abnormal ECG Diagnosis (비정상 ECG 진단의 에너지 효율적인 재구성 가능한 가속을 위한 OpenCL 기반 FPGA-GPU 혼합 계층 적응 처리 알고리즘 할당)

  • Lee, Dongkyu;Lee, Seungmin;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1279-1286
    • /
    • 2021
  • The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.

Assessment of the efficiency of a pre- versus post-acquisition metal artifact reduction algorithm in the presence of 3 different dental implant materials using multiple CBCT settings: An in vitro study

  • Shahmirzadi, Solaleh;Sharaf, Rana A.;Saadat, Sarang;Moore, William S.;Geha, Hassem;Tamimi, Dania;Kocasarac, Husniye Demirturk
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Purpose: The aim of this study was to assess artifacts generated in cone-beam computed tomography (CBCT) of 3 types of dental implants using 3 metal artifact reduction (MAR) algorithm conditions (pre-acquisition MAR, post-acquisition MAR, and no MAR), and 2 peak kilovoltage (kVp) settings. Materials and Methods: Titanium-zirconium, titanium, and zirconium alloy implants were placed in a dry mandible. CBCT images were acquired using 84 and 90 kVp and at normal resolution for all 3 MAR conditions. The images were analyzed using ImageJ software (National Institutes of Health, Bethesda, MD) to calculate the intensity of artifacts for each combination of material and settings. A 3-factor analysis of variance model with up to 3-way interactions was used to determine whether there was a statistically significant difference in the mean intensity of artifacts associated with each factor. Results: The analysis of all 3 MAR conditions showed that using no MAR resulted in substantially more severe artifacts than either of the 2 MAR algorithms for the 3 implant materials; however, there were no significant differences between pre- and post-acquisition MAR. The 90 kVp setting generated less intense artifacts on average than the 84 kVp setting. The titanium-zirconium alloy generated significantly less intense artifacts than zirconium. Titanium generated artifacts at an intermediate level relative to the other 2 implant materials, but was not statistically significantly different from either. Conclusion: This in vitro study suggests that artifacts can be minimized by using a titanium-zirconium alloy at the 90 kVp setting, with either MAR setting.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

Analysis of Academic Achievement Data Using AI Cluster Algorithms (AI 군집 알고리즘을 활용한 학업 성취도 데이터 분석)

  • Koo, Dukhoi;Jung, Soyeong
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.1005-1013
    • /
    • 2021
  • With the prolonged COVID-19, the existing academic gap is widening. The purpose of this study is to provide homeroom teachers with a visual confirmation of the academic achievement gap in grades and classrooms through academic achievement analysis, and to use this to help them design lessons and explore ways to improve the academic achievement gap. The data of students' Korean and math diagnostic evaluation scores at the beginning of the school year were visualized as clusters using the K-means algorithm, and as a result, it was confirmed that a meaningful clusters were formed. In addition, through the results of the teacher interview, it was confirmed that this system was meaningful in improving the academic achievement gap, such as checking the learning level and academic achievement of students, and designing classes such as individual supplementary instruction and level-specific learning. This means that this academic achievement data analysis system helps to improve the academic gap. This study provides practical help to homeroom teachers in exploring ways to improve the academic gap in grades and classes, and is expected to ultimately contribute to improving the academic gap.

Deep learning-based apical lesion segmentation from panoramic radiographs

  • Il-Seok, Song;Hak-Kyun, Shin;Ju-Hee, Kang;Jo-Eun, Kim;Kyung-Hoe, Huh;Won-Jin, Yi;Sam-Sun, Lee;Min-Suk, Heo
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.351-357
    • /
    • 2022
  • Purpose: Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial intelligence methods in the field of medical and dental research. CNNs can provide an effective diagnostic methodology allowing for the detection of early-staged diseases. Therefore, this study aimed to evaluate the performance of a deep CNN algorithm for apical lesion segmentation from panoramic radiographs. Materials and Methods: A total of 1000 panoramic images showing apical lesions were separated into training (n=800, 80%), validation (n=100, 10%), and test (n=100, 10%) datasets. The performance of identifying apical lesions was evaluated by calculating the precision, recall, and F1-score. Results: In the test group of 180 apical lesions, 147 lesions were segmented from panoramic radiographs with an intersection over union (IoU) threshold of 0.3. The F1-score values, as a measure of performance, were 0.828, 0.815, and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5. Conclusion: This study showed the potential utility of a deep learning-guided approach for the segmentation of apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting apical lesions.

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

Research on the Performance Optimization of HR-Net for Spinal Region Segmentation in Whole Spine X-ray Images (Whole Spine X-ray 영상에서 척추 영역 분할을 위한 HR-Net 성능 최적화에 관한 연구)

  • Han Beom Yu;Ho Seong Hwang;Dong Hyun Kim;Hee Jue Oh;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.139-147
    • /
    • 2024
  • This study enhances AI algorithms for extracting spinal regions from Whole Spine X-rays, aiming for higher accuracy while minimizing learning and detection times. Whole Spine X-rays, critical for diagnosing conditions such as scoliosis and kyphosis, necessitate precise differentiation of spinal contours. The conventional manual methodology encounters challenge due to the overlap of anatomical structures, prompting the integration of AI to overcome these limitations and enhance diagnostic precision. In this study, 1204 AP and 500 LAT Whole Spine X-ray images were meticulously labeled, spanning the third cervical to the fifth lumbar vertebrae. We based our efforts on the HR-Net algorithm, which exhibited the highest accuracy, and proceeded to simplify its network architecture and enhance the block structure for optimization. The optimized HR-Net algorithm demonstrates an improvement, increasing accuracy by 2.98% for the AP dataset and 1.59% for the LAT dataset compared to its original formulation. Additionally, the modification resulted in a substantial reduction in learning time by 70.06% for AP images and 68.43% for LAT images, along with a decrease in detection time by 47.18% for AP and 43.07% for LAT images. The time taken per image for detection was also reduced by 47.09% for AP and 43.07% for LAT images. We suggest that the application of the proposed HR-Net in this study can lead to more accurate and efficient extraction of spinal regions in Whole Spine X-ray images. This can become a crucial tool for medical professionals in the diagnosis and treatment of spinal-related conditions, and it will serve as a foundation for future research aimed at further improving the accuracy and speed of spinal region segmentation.