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Introduction
Apical periodontitis manifests radiographically as apical 

radiolucencies on various radiographic modalities such as 
periapical or panoramic radiography and cone-beam com-
puted tomography (CBCT). Although CBCT has a consi- 
derably higher discriminatory ability than conventional  
radiography,1 its application is limited due to its cost and 
relatively high radiation dose. Both periapical and panora- 
mic radiographs are common imaging modalities for the 
diagnosis of apical lesions. Panoramic radiography is rou-
tinely taken to screen patients for dental caries, periapical 

lesions, periodontal conditions, infrabony defects, and other  
dental diseases.2

Regardless of their ability to distinguish various enti-
ties, radiographic examinations are prone to suffering from  
inter- and intra-examiner reliability.3,4 The reliability of these  
modalities further depends on the experience of a trained 
examiner.5 Current empirical approaches for prediction and  
analysis of quantitative and qualitative dental disease, there- 
fore, substantially rely on the combination of dental practi- 
tioners’ experience and subjective evaluations. These clini- 
cal approaches and methodologies are inefficient for achiev- 
ing early detection and accurate prediction of dental dis-
eases, as they require a large amount of time and effort in 
the screening process. These methods are further limited 
in their ability to provide highly reliable and standardized 
clinical evaluations. For instance, in the field of radio-
graphic imaging, the detection of landmarks on cephalo-
grams, detection of maxillary sinusitis, and early-stage 
diagnosis of dental caries and periodontitis require highly 
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ABSTRACT

Purpose: Convolutional neural networks (CNNs) have rapidly emerged as one of the most promising artificial 
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and 0.742, respectively, with IoU thresholds of 0.3, 0.4, and 0.5.
Conclusion: This study showed the potential utility of a deep learning-guided approach for the segmentation of 
apical lesions. The deep CNN algorithm using U-Net demonstrated considerably high performance in detecting 
apical lesions. (Imaging Sci Dent 2022; 52: 351-7)
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time-consuming processes, involving an interconnected 
set of detection tasks, which are mostly performed through 
manual evaluation requiring human labor. 

With the aid of recently emerging artificial intelligence, 
recognition guided by deep learning (defined as a subset of 
machine learning) has successfully demonstrated its excel-
lent ability and performance in medical and dental applica-
tions.6,7 The inherent problems of empirical approaches can 
be efficiently overcome, particularly in toral and maxillofa-
cial imaging, through deep-learning approaches to classify 
and convert 2-dimensional panoramic radiographs, while 
simultaneously diagnosing diseases on the converted radio-
graphs.8

This study performed convolutional neural network (CNN)- 
based apical lesion segmentation for the purpose of screen-
ing apical lesions on panoramic radiographs. Rather than 
relying on manually cropped image segments of each tooth 
as the initial training dataset,9 this study utilized whole pan-
oramic images in the training dataset to provide an efficient 
method of screening and detecting early-stage apical lesions. 
The rapid screening and automatic prediction of dental dis-
eases enabled by the deep-learning process facilitates more 
efficient diagnoses and rapid detection of apical lesions 
with high precision and sensitivity. The novel deep-learning 
approach and framework developed in this study provide 
fundamental insights into more efficient ways to detect and 
classify dental diseases using data augmentation, which can 
also be applied in other medical fields.

A U-Net network was adopted for apical lesion segmen-
tation in this study, although previous studies have used 

YOLO-based networks for detecting dental diseases.10,11 
Semantic segmentation is a form of pixel-level prediction 
and seemed more appropriate for identifying apical lesions 
with small pixels. The purpose of this study was to evaluate 
the performance of a pre-trained U-Net model for apical le-
sion segmentation on panoramic radiographs.

Materials and Methods
Data preparation
The dataset consisted of a total of 1000 panoramic radio- 

graph samples of patients who visited Seoul National Univ- 
ersity Dental Hospital from 2018 to 2019. These radio-
graphs included 1691 apical lesions. Panoramic radiographs  
were obtained from adult patients without mixed dentition, 
and only 1 radiograph was used from each patient. Radio-
graphic images with severe noise and blurring were exclud-
ed. The study was approved by the Institutional Review 
Board (IRB) of Seoul National University Dental Hospital 

(ERI19010) with a waiver of informed consent. The data 
collection and all experiments were performed in accor-
dance with the relevant guidelines and regulations.

Apical lesion labeling
Apical lesions were detected by 3 oral and maxillofacial 

radiologists with more than 10 years of experience in this 
field based on the agreement of 2 or more radiologists. 
Panoramic radiographs were labeled manually in red by 
drawing outlines of the lesions using polygon labeling tools 
for the training set (Fig. 1).

Fig. 1. Training software called 
“Deep Stack.” The lesions are labeled  
by outlining with polygon labeling 
tools.
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Preprocessing and augmentation of panoramic 
radiographs
A total of 1000 panoramic images with a resolution of 

1976×976 pixels were collected and resized to 960×480 
pixels and converted into the PNG file format. The dataset 
was randomly divided into training (n=800 [80%]), valida- 
tion (n=100, 10%), and test (n=100, 10%) datasets before 
data augmentation. The dataset was composed of 1511 api-
cal lesions for training and 180 apical lesions for testing. 
Due to the limited number of panoramic images, data aug-
mentation was performed to increase the amount of training 
data. The training dataset was randomly augmented during 
all phases using flip, blur, shift, scale, rotation, sharpening, 
emboss, contrast, brightness, grid distortion, and elastic 
transform through online augmentation. Online augmenta-
tion uses a specific augmentation method at each phase for 
optimized training, and it is transferable and more effec-
tive for models trained on limited training datasets.12 The 
model was optimized using PyTorch (v 1.7.1) with CUDA 

(v 11.0) in the Python open-source programming language 

(v 3.6.12; Python Software Foundation, Wilmington, DE, 
USA; retrieved on August 17, 2020, from https://www. 

python.org/). The training was processed with NVIDIA 
DGX Station (Nvidia Corporation, Santa Clara, CA, USA) 
having 4 V100 GPU cores, Intel Xeon E5-2698 v4 CPU 

(Intel Corp, Chandler, AZ, USA) and 256 GB of DDR4 
RAM.

Architecture of the deep CNN algorithm
In this study, a pre-trained U-Net CNN network was 

used for preprocessing and transfer learning (Fig. 2). In 
particular, the U-Net model comprises 2 different paths: a 
contracting path (left) and an expansive path (right).13 In 
the contracting part, the original radiographic images are 
used as input to encode for multiple layers of convolution 

(3×3), rectified linear unit (ReLU) activation, max-pooling  
operation (2 ×2), and compression into a latent space. At 
each contracting step, the number of feature channels is 
doubled. The expanding part is the reverse process of the 
contracting part. Specifically, CNNs attempt to translate 
the contracted information from the latent space through an 
up-convolution operation (2×2) with a feature map where-
in the number of feature channels is reduced to half and  
further to generate the segmentation mask of the image. 

Fig. 2. U-Net model architecture for the detection of apical lesions (example: 32× 32 pixels in the lowest resolution). Each blue box represents a  
multi-channel feature map. The number of channels is labeled on top of the box. The x-y-size is offered at the bottom of the box. White boxes 
represent duplicated feature maps. The arrows indicate the different operations.
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The remaining decoding operations are the reverse of the 
encoding parts (cropping feature map from contracting 
path, 3 ×3 convolution, ReLU). Importantly, image crop-
ping is required as a result of the loss of information related 
to border pixels during the process of every convolution. 
To map a 64-component feature vector to the desired num-
ber of classes, the last layer of a 1×1 convolution is finally 
utilized. In total, the network has 23 convolutional layers. 

Evaluation of the detection and classification 
performance of the deep CNN model
The performance of the developed CNN model was eval-

uated only using the test dataset, which was constructed in-
dependently from the training dataset. Precision, recall, and 
F1-score were calculated as demonstrated in the following 
equations (1-3). These parameters are commonly calculated 
to evaluate the performance of CNN models.

	 TP
Precision = ------------� (1)
	 FP + TP

	 TP
Recall = ------------� (2)
	 FN + TP

	 Precision·Recall
F1- score = 2·---------------------------� (3)
	 Precision + Recall

where TP represents the number of true positives, FP rep-
resents the number of false positives, and FN represents the 
number of false negatives. 

Intensity histogram analysis
During image processing, the intensity histogram of an 

image is generated by converting the image to a 256-pixel 
scale based on the grayscale values (Fig. 3). A lower pixel 
number reflects darker images and a higher pixel number 
corresponds to lighter images. In this histogram, the pixel 
numbers in the range of 81-91 showed the highest probable 
density populations.

Results
With an intersection over union (IoU) threshold of 0.3, 

the pre-trained CNN model segmented 147 lesions from 
the test group of 180 apical lesions (true positives). Thirty- 
one lesions were not segmented (false negatives), while 
30 lesions that were not labeled manually were segmented  

(false positives). With an IoU threshold of 0.4, the pre-
trained CNN model segmented 143 lesions from the test 
group of 180 apical lesions (true positives). Thirty-four  

lesions were not segmented (false negatives), and 31 lesions  
that were not labeled manually were segmented (false posi- 
tives). With an IoU threshold of 0.5, the pre-trained CNN 
model segmented 125 lesions from the test group of 180 
apical lesions (true positives). Forty-four lesions were not 
segmented (false negatives), but 43 lesions that were not  
labeled manually were segmented (false positives) (Table 
1).

The performance of the U-Net model for apical lesion 
segmentation was analyzed while adjusting the IoU thre- 

Fig. 3. Intensity histogram. Overall consistency was identified, with- 
out jagged edges for a specific labeled lesion.

Table 1. The number of apical lesions segmented by U-Net

IoU 
threshold

True 
positives

False 
negatives

False 
positives

0.3 147 31 30
0.4 143 34 31
0.5 125 44 43

IoU: intersection over union

Table 2. Measurements of precision (positive predictive value), 
recall (sensitivity), and F1-score for apical lesion segmentation by 
U-Net

IoU 
threshold Precision Recall F1-score

0.3 0.831 0.826 0.828
0.4 0.822 0.808 0.815
0.5 0.744 0.740 0.742

IoU:  intersection over union
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shold (IoU) from 0.3 to 0.5 t. All of the detection perfor-
mance metrics (precision, recall, and F1-score) generally 
decreased from 0.826-0.831 (at an IoU of 0.3) to 0.740-
0.744 (at an IoU of 0.5) as the IoU threshold was gradually 
increased. The F1-score, which reflects both precision and 
recall, was higher with a lower IoU threshold, suggesting 
improved detection and classification performance (Table 
2).

The precision, recall, and F1-score were 0.831, 0.826, 
and 0.828 for U-Net model, respectively, at the lowest IoU 
threshold of 0.3. The corresponding values were 0.822, 
0.808, and 0.815 with an IoU threshold of 0.4 and 0.744, 
0.740, and 0.742 with an IoU threshold of 0.5, respectively 

(Table 2).
The training and validation datasets were evaluated over 

the course of each epoch from 0-450, with each epoch rep-
resenting 1 pass through the entire training dataset (Fig. 
4). The loss (or accuracy in reverse) recorded for the train-

ing and validation datasets generally decreased during the 
course of the 450 repeated epochs. The final resulting loss 
value was 0.30 for the validation dataset and 0.18 for the 
training dataset. Both losses flattened out after 400 epochs, 
implying that no additional improvement was made there-
after. 

Apical lesions were segmented using the pre-trained UNet- 
based CNN model. Original images were prepared as the test 
dataset (Fig. 5A). White outlines denote the manual label- 
ing of the ground truth to compare areas segmented by the 
pre-trained CNN (Fig. 5B), while white areas denote the 
UNet-based CNN-generated areas for apical lesions (Fig. 
5C). The segmentation using the model was not signifi-
cantly different from the manual labeling.

Discussion
To date, few studies have employed deep learning as 

a tool for detecting apical lesions. A deep learning-based 
CNN algorithm enabled the automated detection of apical 
lesions efficiently and effectively, minimizing the depen-
dence on the ability of examiners. However, to the best of  
the authors’ knowledge, no study has yet examined the 
functionality of CNN for the automated diagnosis of apical 
lesions using entire panoramic radiographs. In this study,  
panoramic radiographs were used for training to detect apical  
lesions, and the possibility of artificial intelligence-guided 
diagnosis of apical lesions at early stage was confirmed.

Data augmentation is commonly used to train CNN mod-
els.11,14,15 It is an integral process of many state-of-the-art 
deep learning systems for image classification, object de-
tection, and segmentation.16 Current deep neural networks 
have a number of parameters, tending to overfit the limited 
training data. Data augmentation is used to increase both 
the quantity and diversity of training data, thus prevent-
ing overfitting and improving generalization.17 This study 
adopted online data augmentation, which integrates both 
adversarial training and meta-learning for efficient training. 

Fig. 4. Training and validation curves for the pre-trained augmented  
model. Training and validation were performed for 450 epochs, 
with each epoch representing 1 pass through the entire training and 
validation datasets. Overfitting was minimized under 400 epochs.

Fig. 5. An example of apical lesion segmentation from panoramic radiographs using the U-Net model. A. An original panoramic radio-
graph is prepared for testing. B. White outlines denote the manual labeling. C. White areas denote the CNN-generated areas by U-Net.

A B C
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This method can optimize data augmentation and target 
network training in an online manner. The advantages of 
online augmentation are the opposite features of offline 
methods.18 Their complementary character enables them 
to be applied together. The augmentation network can be 
applied to the target network through online training from 
start to finish, precluding the inconveniences of pre-train-
ing or early stopping. Offline learning methods usually rely 
on distributed training, as there are many parallel optimiza-
tion processes, but online data augmentation is simple and 
easy for training. 

The CNN-based model identified apical lesions in the 
maxilla and mandible with high performance, but it showed 
higher accuracy in the mandible than in the maxilla. An  
explanation for this may be that many anatomical structures, 
such as sinus floor, nasal cavity, and anterior nasal spine, 
were superimposed on the maxilla and interfered with the  
segmentation process of CNN. In contrast, there were not 
many overlapping anatomical structures on the mandible,  
facilitating better results. Therefore, further studies are need-
ed to improve the detection performance for apical lesions 
in the maxilla.

All panoramic images were cropped and resized to 960 ×  
480 pixels for training and validation due to the training 
time, cost of computing devices, and storage space. Data-
sets with high-resolution images can improve the accuracy 
and discriminatory ability,19,20 and the lack of high-resolu-
tion images may be considered a limitation of this study. 
Higher-performance computing devices will enable a train-
ing process using high-resolution images. Furthermore, 
in future studies, panoramic images with deciduous teeth 
could be included, while only panoramic images with per-
manent teeth were included in this study.

The potential utility of deep learning for the detection 
and diagnosis of apical lesions was identified. The U-Net 
algorithm provided considerably good performance in 
detecting apical lesions in panoramic radiographs. CNN-
based diagnosis may be a competent assistant for detecting 
dental and medical diseases at an early-stage.
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