• Title/Summary/Keyword: Dew Point Temperature

Search Result 133, Processing Time 0.019 seconds

The Effect of Temperature on Aluminum Oxide and Chilled Mirror Dew-point Hygrometers (산화 알루미늄 및 냉각거울 노점계의 온도 의존성에 관한 연구)

  • Kim, Jong Chul;Choi, Byung Il;Woo, Sang-Bong;Kim, Yong-Gyoo;Lee, Sang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • The measurement of absolute humidity of gases is essential in many industries. The effect of temperature on aluminum oxide and chilled mirror dew-point hygrometers is investigated. The temperature of laboratory, pipe line, and sensor is varied and the dew point is measured by two different aluminum oxide hygrometers. In all cases, the dew point of hygrometers is increased as the temperature is elevated. The reason behind this observation is due to desorption of water from the inside of pipe line and/or sensor surroundings at elevated temperature that result in the increase of the absolute humidity. Moreover, the sensor itself shows a certain degree of temperature dependency in sensing the humidity especially at low temperature. It is also studied that chilled mirror dew-point hygrometer may indicate a higher dew point than the reference at high temperature because the cooling capability of mirror is decreased at high temperature. Our study will provide evidences in the incorporation of the temperature effect as uncertainty factors in the standard calibration procedure for dew point hygrometers.

Regional Analysis of Dew Possibility in Road Sign Using Meteorological Data (기상자료를 활용한 도로표지 결로의 지역별 발생가능성 분석)

  • Oh, Sei Chang;Kim, Jung Min;Choi, Kee Choo;An, Young Mi
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.195-202
    • /
    • 2013
  • PURPOSES : This study analyzed the regional dew possibility in road sign using meteorological data. METHODS : Four years of meteorological data such as temperature, humidity, dew point, wind velocity were collected and analyzed. As a result of literature review, dew was frequent in large diurnal range, high humidity and weak wind. So, dew possibility was analyzed by (temperature-dew point ${\leq}1^{\circ}C$ and wind velocity ${\leq}$ 1.5m/s). RESULTS : The possibility was analyzed for each meteorological observation point and the point of Suncheon and Bonghwa were selected as the most likely points of dew in road sign. The area of East Coast, Kyungbuk and Kyungnam were relatively low potential. CONCLUSIONS : Alternative with high effect of preventing dew should be selected in high possibility dew area despite of low economics.

Electrical Measurement of SOx Dew Point (SOx노점의 전기적 측정)

  • Chun, Y.N.;Yong, K.J.;Chae, J.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.600-610
    • /
    • 1995
  • When combustion gas is cooled down below the dew point of sulfuric acid vapor in the heat recovery systems, condensation occurs. Since the condensed sulfuric acid solution causes low-temperature corrosion in materials, it is important to measure the SOx dew point by electric measurement. In this study, two kinds of probes having electric gaps of 1mm or 2mm were used. and experiments were carried out by the parameters of sulfuric acid vapor and water vapor concentration. The changes of electric current caused by sulfuric acid condensed on the surface of probe according to the cooling rate and the probe head surface temperature were sudied. The opimum cooling rate was decreased with the increasing of water vaper concentration regardless of sulfuric acid concentration. The sensitivity of electric current is improved for the narrower gap(1mm) of ring electrodes, but it rarely affects the SOx dew point measuring of different probes according to the change of cooling rate.

  • PDF

Development of QCM dew point sensor and its sensing characteristics study (수정미소저울 노점센서 제작 및 반응특성 연구)

  • Kwon, Su-Yong;Kim, Jong-Chul;Choi, Byung-Il
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.269-276
    • /
    • 2006
  • This paper represents development of quartz crystal microbalance (QCM) and usage as a dew point sensor. The temperature of a quartz resonator was controlled precisely from $20^{\circ}C$ to $-30^{\circ}C$ with the ramping rate of $0.1^{\circ}C/s$ by using a custom-made crystal holder housing the quartz resonator associated with a thermoelectric cooler (Peltier cooler), which results in the working range from $15.2^{\circ}C$ to $-24.0^{\circ}C$ based on an accurate holder temperature compensation and temperature effect compensation process. The developed QCM dew point sensor and analysis techniques show very good sensing characteristics at measurement of moist air with the relative humidity from 10 %R.H. to 90 %R.H. generated by a divided-type humidity generator and the dew point temperatures were determined with an accuracy of less than ${\pm}0.18^{\circ}C$, which also showed good agreement with reference values in their error range.

Analysis of dew point and corrosion resistance for power plant economizer tube with exhaust gas temperature and sulfuric acid concentration (발전소 절탄기 튜브의 배기가스 온도와 황산 농도에 따른 노점 및 내식성 분석)

  • Choi, Jae-Hoon;Lee, Seung-Jun
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Environmental pollution caused by power plant exhaust gas is highlighted and eco-friendly regulations are being strengthened. However, due to the abundant reserves and low prices of coal, still the most used for power generation in the world. Therefore, flexible operation of coal-fired power plants to reduce emissions has become an inevitable option. However, lowering the output increases the possibility of acid dew point corrosion as the exhaust gas temperature decreases. The dew point corrosion occurs when condensable gases such as SO3, HCl, NO2 and H2O cools below the saturation temperature. SO3 is already well known to cause severe low- temperature corrosion in coal-fired power plants. Therefore, this study aims to prevent damage that may occur during operation by analyzing the dew point and corrosion resistance with exhaust gas temperature and sulfuric acid concentration of the power plant economizer tube.

Analysis of Corrosion Resistance and Dew Point with Exhaust Gas Concentration and Temperature for Air Preheater Materials in Power Plants (발전소 공기예열기 소재의 배기가스 농도 및 온도에 따른 내식성 및 노점 분석)

  • Seung-Jun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.351-358
    • /
    • 2023
  • Although many thermal power plants use heat recovery systems, high exhaust gas temperatures are maintained due to corrosion at dew points and ash deposits caused by condensate formation. The dew point of exhaust gas is primarily determined by the concentration of SO3 and steam, and various experiments and calculation equations have been employed to estimate it. However, these methods are known to be less suitable for exhaust gases with low SO3 concentrations. Therefore, in this study, since the temperature of the exhaust gas is expected to decrease due to the low-load operation of the coal-fired power plant, sulfuric acid condensation and low-temperature corrosion are anticipated. We aimed to conduct a quantitative evaluation to propose ways to prevent damage by limiting operating conditions and improving facilities. The experimental results showed that the corrosion rate increased linearly with rising temperatures at a certain sulfuric acid concentration. Furthermore, variations in sulfuric acid concentrations generated during the current power plant operation process did not significantly affect the dew point, and the dew point of sulfuric acid under these conditions was observed to be between 120 - 130 ℃.

Analysis of Meteorological Features and Prediction Probability Associated with the Fog Occurrence at Chuncheon (춘천의 안개발생과 관련된 기상특성분석 및 수치모의)

  • Lee Hwa Woon;Lee Kwi Ok;Baek Seung-Joo;Kim Dong Hyeok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.303-313
    • /
    • 2005
  • In this study, meteorological characteristics concerning the occurrence of fog are analyzed using 4-years $(2000\~2003)$ data at Chuncheon and the probability of prediction is investigated. From the analysis of meteorological characteristics, the fog at Chuncheon occurred before sunrise time and disappeared after that time and lasted for $2\~4$ hours. When fog occurred, on the whole, wind direction was blew the northerly and wind speed was below 2.1m/s. Especially, about $42\%$ of foggy day fell on the calm $(0\~0.2\;ms^{-1})$ conditions. The difference between air temperature and dew point temperature near the surface were mainly less than $2^{\circ}C$. For the lack of water surface temperature, the water surface temperature was calculated by using Water Quality River Reservoir System (WQRRS) and then it was used as the surface boundary condition of MM5. The numerical experiment was carried out for 2 days from 1300 LST on 14 October 2003 to 1300 LST on 16 October 2003 and fog was simulated at dawn on 15 and 16 October 2003. Simulated air temperature and dew point temperature indicate the similar tendency to observation and the simulated difference between air temperature and dew point temperature has also the similar tendency within $2^{\circ}C$. Thus, the occurrence of fog is well simulated in the terms of the difference between air temperature and dew point temperature. Horizontal distribution of the difference between air temperature and dew point temperature from the numerical experiment indicates occurrence, dissipation and lasting time of fog at Chuncheon. In Chuncheon, there is close correlation between the frequency of fog day and outflow from Soyang reservoir and high frequency of occurrence due to the difference between air and cold outlet water temperature.

Improvement of Condensation Performance in Corridor Type Apartment Door

  • Lee, Sungbok;Hwang, Hajin
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • Condensation has mainly occurred in corridor type apartment door which is exposed to the outside air and is made of steel, which has high thermal conductivity. As a result, the total costs of repair have increased with the number of disputes with residents. In this study, therefore, we investigate materials and construction methods used in apartment door, perform a computer simulation to find out possible improvements, and then suggest the dew point to prevent the occurrence of condensation throughout simulation. The results indicate that the temperature that condensation does not occur is $15.4^{\circ}C$, and the optimum method of achieving this dew point is shown to be a door frame system including a large vertical slot to decrease the area of thermal conduction between the outer and inner portions of the door frame. Mock-up tests show that the surface temperature of the door frame was higher than the dew point, and the system can withstand severe cold conditions of $-20^{\circ}C$. In application test, the surface temperature of door frame with vertical slots is $5.9^{\circ}C$in average, which is higher than the existing door frame. Furthermore, in the temperature distribution of the surrounding door measured with infrared ray camera, the existing door shows the high temperature distribution indicating lack of insulation, but the improved door shows the low temperature distribution indicating higher insulation.

System Implementation for Dew Condensation Prevention of Distributing Boards based on the Dew Point (이슬 결로점 기반 수배전반 결로 방지 장치 제작)

  • Kim, Tae-Myoung;Jee, Suk-Kun;Kim, Young-Wan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.645-650
    • /
    • 2018
  • IT-based automatic controller that control the temperature and humidity to prevent dew condensation of distributing board was designed and implemented in this paper. The dew condensation temperature was deduced from room temperature and humidity of distributing board. Based on the comparisons between the deduced dew condensation temperature and the temperature of surface condensation, the facilities that can prevent the condensation was implemented to be operated in due order. Also, the remote monitoring module to monitor operation status of controller was implemented using LoRa technique. The performances for controller operation and data transmission were validated from the transmission and operation test for dew condensation prevention. The controller can be put to good use at the facilities that requires the condensation prevention.

A Study on Factors that Influence Traffic Accident Severity in Road Surface Freezing (결빙구간의 교통사고 심각도 영향 요인 연구)

  • Lee, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.150-156
    • /
    • 2017
  • A frozen road surface increases traffic accidents during the winter season. Hence, information on easily-frozen road sections and their specificities are required to prevent traffic accidents. Frozen road surfaces are determined by equipment measuring road surface temperatures. However, there are limitations in investigating the entire road network. Therefore, it is imperative to develop new methods that effectively determine road surface freezing risks. Meteorologically, road surfaces are frozen when the actual temperature cools down to the dew point temperature. Under this condition, there is likely to be frost if relative humidity reaches 100% and frozen road surfaces as the temperature gets lower. Meteorological characteristics give us an alternative to a direct measurement road surface temperature to estimate risks of road surface freezing. Based on the clues, the relationship between severity of traffic accidents and temperature changes is empirically investigated using Paju weather data. The results reveal that as the temperature gets lower and changes in current temperature are relatively small, the severity of traffic accidents become higher. In addition, the same is true when the difference between current temperature and the dew point temperature is relatively small, as it increases possibilities of road surface freezing. Future studies must investigate how current temperature and the dew point temperature affect road surface freezing and thereby establish a time-space scope to estimate possible road surface freezing sections using only weather and road material type data. This would provide invaluable information for predicting and preventing frozen road accidents based on weather patterns.