• Title/Summary/Keyword: Design and Fabrication

Search Result 2,719, Processing Time 0.033 seconds

A Study on Constant-Speed Position Control of Solid Freeform Fabrication System (임의형상가공시스템의 정속위치제어)

  • Jung, Yong-Rae;Ko, Min-Kook;Kim, Seung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.75-78
    • /
    • 2002
  • SFFS(Solid Freeform Fabrication System) is commercializing to rapid prototyping concept in world-wide some corporations including the States, have much technological problems yet and need new mode for agile solid freeform fabrication as well as prototyping. In this paper, we design an automatic control algorithm that the cutting path of laser beam, on the SFFS, is controlled with constant speed. The designed algorithm for constant-speed path control is implemented and experimented in the $CAFL^{VM}$ (Computer Aided Fabrication of Lamination for Various Material) system, the new SFFS which is developed in this paper. Its process is an automated fabrication method in which a 3D object is constructed from STL(SToreoLithography) 2D data, derived from CAD 3D image, by sequentially laminating the part cross-sections. The constant-speed path control is started from the STL data. After STL file is modified in data format to be available for control. The fabrication of the 2D part is, with constant speed, conducted from the 23 position data by laser beam. we confirm its high-performance through experiment results from the application into $CAFL^{VM}$ system.

  • PDF

Parametric Analysis and Design Engine for Tall Building Structures

  • Ho, Goman;Liu, Peng;Liu, Michael
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 2012
  • With the rise in CPU power and the generalization and popularity of computers, engineering practice also changed from hand calculations to 3D computer models, from elastic linear analysis to 3D nonlinear static analysis and 3D nonlinear transient dynamic analysis. Thanks to holistic design approach and current trends in freeform and contemporary architecture, BIM concept is no longer a dream but also a reality. BIM is not just providing a media for better co-ordination but also to shorten the round-the-clock time in updating models to match with other professional disciplines. With the parametric modeling tools, structural information is also linked with BIM system and quickly produces analysis and design results from checking to fabrication. This paper presents a new framework which not just linked the BIM system by means of parametric mean but also create and produce connection FE model and fabrication drawings etc. This framework will facilitate structural engineers to produce well co-ordinate, optimized and safe structures.

Characterization and Design Consideration of 80-nm Self-Aligned N-/P-Channel I-MOS Devices

  • Choi, Woo-Young;Lee, Jong-Duk;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.1
    • /
    • pp.43-51
    • /
    • 2006
  • 80-nm self-aligned n-and p-channel I-MOS devices were demonstrated by using a novel fabrication method featuring double sidewall spacer, elevated drain structure and RTA process. The fabricated devices showed a normal transistor operation with extremely small subthreshold swing less than 12.2 mV/dec at room temperature. The n- and p-channel I-MOS devices had an ON/OFF current of 394.1/0.3 ${\mu}A$ and 355.4/8.9 ${\mu}A$ per ${\mu}m$, respectively. We also investigated some critical issues in device design such as the junction depth of the source extension region and the substrate doping concentration.

A Study on the Design, Fabrication and Characteristics Test of 25KJ Superconducting Magnetic Energy Storage (25KJ 초전도 에너지 저장장치의 설계,제작 및 특성 시험)

  • 홍원표;원종수;이송엽;이승원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.683-693
    • /
    • 1988
  • For the economical and reasonable operation of electric power system according to continual increase of electric power demand and decrease of load factor, the potential application of superconducting magnertic energy storage [SMES] with high efficiency and fast response in the electric utility is receiving attractive attension. In the light of this background, to confirm the basic principle of SMES, theoretical study, design technique and fabrication procedure for superconducting coil, current lead, cryostat, measuring and protection system of SMES are described in detail. Especially, a new design technique for superconducting coil and current lead is porposed and it was proved experimentally by the performance test of SMES which is developed for the first time in our country. At the peak operating current 200A, the maximum magnetic field amd stored energy of the coil are 3.52T and 2500J, espectively. The thermal and mechanical stability of 2500J SMES is also confirmed experimetally by its characteristics test, AC loss, protection system, charge and discharge test. The experimetal results show good characteristics of energy storage system.

  • PDF

Design Technology Development of the 28 GHz Up and Down Converters (28 GHz 상향 및 하향변환기 설계기술 개발)

  • Na, Chae-Ho;Woo, Dong-Sik;Kim, Kang-Wook
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.366-370
    • /
    • 2003
  • This paper introduces a new design and fabrication technology of 28 GHz low-cost up and down converter modules for digital microwave radios, The design of the converter module is based on unit circuit blocks, which are to be characterized using a special test fixture. Based on the cascade analysis of the module the 28 GHz up and down converter modules have been designed and implemented. The measured module performance agrees with the cascade analysis. New components such as a tapped edge-coupled filter and a new Ka-band waveguide-to-microstrip transition, which are less sensitive to fabrication tolerances, have been used in the module implementation.

  • PDF

Micro-pattern Fabrication of Amorphous Alloy by Laser Beam Machining (비정질 합금의 마이크로 패턴 레이저 가공)

  • Kim, Haan;Park, Jong Wuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.77-83
    • /
    • 2022
  • Amorphous alloys exhibit excellent mechanical properties; therefore, application technology development is being attempted in various fields. However, industrial use of application technology is limited owing to the limitations in fabrication. In this study, micropattern fabrication of an amorphous alloy was conducted using laser beam machining. Although microhole fabrication is possible without the deformation of the amorphous phase through nanosecond pulsed laser beam machining, there are limitations in the generation of recast layers and spatters. In cover plate laser beam machining (c-LBM), a cover plate is used to reduce the thermal deformation and processing area. Therefore, it is possible to fabricate holes at the level of several micrometers. In this study, it was confirmed that recast layers are hardly generated in c-LBM. Furthermore, square-shaped micropatterns were successfully fabricated using c-LBM.

Fabrication and Test of a 1 MJ Superconducting Energy Storage System for the Sensitive Load (민감부하 보상용 1 MJ 초전도 에너지저장 시스템 제작 및 시험)

  • 성기철;유인근;한성룡;정희종
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.39-43
    • /
    • 2001
  • For several decades researches and development on superconducting magnetic energy storage(SMES) system have been done for efficient electric power management. Korea Electrotechnology Research Institute (KERI) have developed of a 1MJ , 300kVA SMES System for improving power quality in sensitive electric loads. It consists of an IGBT (Insulated Gate Bipolar Transistor) based power conversion module. NbTi mixed matrix conductor superconducting magnet and a cryostat with HTS current leads. We developed the code fro design of a SMES magnet. Which could find the parameters of the SMES magnet having minimum amount of superconductors for the same store denerby. and designed the 1 MJ SMES magnet by using it . And we have design and fabricated cryostat with kA class HTS current leads for a 1 MJ SMES System. This paper describes the design fabrication and test results for a 1MJ SMES System.

  • PDF

Design and fabrication of GaAs HBT ICs for 10-Gb/s optical communication system (10-Gb/s 광통신시스템을 위한 GaAs HBT IC의 설계 및 제작)

  • 박성호;이태우;김영석;기현철;송기문;박문평;평광위
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.52-59
    • /
    • 1997
  • Design and performance of principal four ICs for the 10-Gb/s optical communication system are presented. AlGaAs/GaAs HBTs are basic devices to implement a laser diode driver, apre-amplifier, and a limiting amplifier, and GaInP/GaAs HBTs are used for an AGC amplifier. We fbricated 11.5-GHz LD driver, a pre-amplifier, and a limiting amplifier, an dGaInP/GaAs HBTs are used for an AGC amplifier. We fabricated LD deriver, 10.5 GHz pre amplifier, 7.2 GHz AGC amplifier, and 10.3 GHz limiting amplifier, optimized circuit design and the stabilized MMIC fabrication process.

  • PDF

Fabrication design of car seat using LM flame retardant fiber (LM 난연사를 이용한 자동차 시트용 직물설계)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.15 no.4
    • /
    • pp.110-121
    • /
    • 2011
  • As car seat is the closest part between driver and rider, the interest of the security and comfort of the seat is increasing. This research discovered the best condition for dyeing and finishing to produce a fabric for car seat and also developed the design of fabrication to give the feeling from such a finishing. The best condition of coating finishing solution is aqueous PU 65%, dye resist reagent 20%, water 12%, thicker 3%, and knife thickness 2mm, tenter temperature $170^{\circ}C$, tenter speed 35yard/min, viscosity 12,000cps and stirring time 100kg * 30min. According to the processing time of knife coating upon stirring the change of resin and the uneven of coating quantity was shown. This problems will be solved by means of automatic temperature control apparatus for resin and sealing device through a coming research.

Study on Design and Electric Characteristics of MOS Controlled Thyristor for High Breakdown Voltage (고내압용 MOS 구동 사이리스터 소자의 설계 및 전기적 특성에 관한 연구)

  • Hong, Young-Sung;Chung, Hun-Suk;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.794-798
    • /
    • 2011
  • This paper was carried out design of 1,700 V Base Resistance Thyristor for fabrication. We decided conventional BRT (base resistance thyristor) device and Trench Gate type one for design. we carried out device and process simulation with T-CAD tools. and then, we have extracted optimal device and process parameters for fabrication. we have analysis electrical characteristics after simulations. As results, we obtained 2,000 V breakdown voltage and 3.0 V Vce,sat. At the same time, we carried out field ring simulation for obtaining high voltage.