• Title/Summary/Keyword: Design Generator

Search Result 2,019, Processing Time 0.029 seconds

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

A Microprocessor Based Design of Walsh Function Generator (마이크로프로세서에 의한 WALSH 함수 발생기 구현)

  • Ahn, D.S.;Park, J.H.;Lee, M.K.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.303-305
    • /
    • 1993
  • Walsh function and transform are important analytical tools for control theory and signal processing and have wide applications in those fields, especially in the field of digital communications. Therefore there is a need for a Walsh function generator in order to realize certain applications. And a number of different desists are known. But desist and implementation of such a generator through hardware logic nay give rise to orthogonality error. To develop Walsh function generator which gets rid of orthogonality error, this paper presents a microprocessor based design and implementation method.

  • PDF

The Design of Chaotic Binary Tream Generator (혼돈 2진 스트림 발생기 설계)

  • Seo, Yong-Won;Park, Jin-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.3
    • /
    • pp.292-297
    • /
    • 2013
  • In this paper, The design of digital circuits for chaotic composition function which is used for the key-stream generator is studied in this work. The overall design concept and procedure due to the mathematical model of chaotic key-stream generator is to be the explained in detail, and also the discretized truth table of chaotic composition function is presented in this paper. consequently, a composition state machine based on the compositive map with connecting two types of one dimensional and two dimensional chaotic maps together is designed and presented.

Optimum Design of a Heat Recovery Steam generator(I) (열회수 증기발생기의 최적설계에 대한 연구(I))

  • 신지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.670-678
    • /
    • 1999
  • Heat recovery steam generator(HRSG) is a principal component of the combined cycle power plant (CCPP) which utilizes the waste energy of the gas turbine exhaust gas. A design of the HRSG is a keypoint to achieve high cycle efficiency with competitive cost. This paper presents a brief review on the design of a HRSG which covers the basic design parameters and their effects on the performance and the investment cost. Finally the concept of the optimum design point is presented according to the selection of a pinch point temperature difference and a steam pressure as an illustrated case.

  • PDF

A Novel Region Decision Method with Mesh Adaptive Direct Search Applied to Optimal FEA-Based Design of Interior PM Generator

  • Lee, Dongsu;Son, Byung Kwan;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1549-1557
    • /
    • 2018
  • Optimizing the design of large-scale electric machines based on nonlinear finite element analysis (FEA) requires longer computation time than other applications of FEA, mainly due to the huge size of the machines. This paper addresses a new region decision method (RDM) with mesh adaptive direct search (MADS) for the optimal design of wind generators in order to reduce the computation time. The validity of the proposed algorithm is evaluated using Rastrigin and Goldstein-Price benchmark function. Moreover, the algorithm is employed for the optimal design of a 5.6MW interior permanent magnet synchronous generator to minimize the torque ripple. Additionally, mechanical stress analysis as well as electromagnetic field analysis have been implemented to prevent breakdown caused by large centrifugal forces of the modified design.

Evaluation of New Design Concepts for Steam Generators in Sodium Cooled Liquid Metal Reactors

  • Kim, Seong-O.;Sim Yoonsub;Kim, Eui-kwang.;Myung-Hwan.Wi;Han, Dohee.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.121-132
    • /
    • 2003
  • To reduce the construction cost and enhance the safety of sodium cooled liquid metal reactors, various kinds of new design concepts were evaluated using the KALIMER operation condition. The required equipment sizes were set for plant electricity output to be similar to that of KALIMER. The evaluations were made focusing on the plant performance and implementation practicality. Each design concept was evaluated for the concept itself and design impacts to interfacing systems. Through the evaluation of the concepts, it was found that the most favorable design concept is the integrated steam generator with forced convection using lead bismuth as the intermediate heat transfer fluid between the primary sodium tube and feed water/steam tube in the steam generator.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

Design of Robust Controller for the Steam Generator in the Nuclear Power Plant Using Intelligent Digital Redesign (지능형 디지털 재설계 기법을 이용한 원자력 발전소 증기발생기의 강인 제어기 설계)

  • 김주원;박진배;조광래;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • This paper describes fuzzy control methodologies of the steam generator which have nonlinear characteristics in the nuclear power plant. Actually, the steam generator part of the power generator has a problem to control water level because it has complex components and nonlinear characteristics. In order to control nonlinear terms of the model, Takagj-Sugeno (75) fuzzy system is used to design a controller. In designing procedure, intelligent digital redesign method is used to control the nonlinear system. This digital controller keeps the performance of the analog controller. Simulation examples are included for ensuring the proposed control method.

  • PDF

A Study of Slotless Permanent Magnet Generator for Small Wind Turbine (소형 풍력용 슬롯리스 영구자석형 발전기에 관한 연구)

  • Kim, Hyoung-Gil;Kong, Jeong-Sik;Oh, Jin-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.981-982
    • /
    • 2011
  • This paper discusses design aspects of slotless permanent magnet generator for high performance and low speed applications. The airgap flux density in was obtained from finite element analysis and the design of a PM generator. The relatively large diameter stator laminations of such machines tend, therefore, to have a very thin back of core and narrow teeth, which make them expensive and difficult to manufacture. this thesis proposes an alternative PM generator topology featuring a slotless stator whose laminations are manufactured from a split core. The test results with a resistive load confirm the satisfactory operation of generator.

  • PDF

Modelling and Analysis of AFPM, RFPM Compound Generator (AFPM, RFPM 복합발전기의 모델링 및 해석)

  • Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.459-462
    • /
    • 2017
  • In this study, we design, model, and analyze a compound generator that combines the axial flux permanent magnet (AFPM,) and radial flux permanent magnet (RFPM), which is expected to increase power generation by allowing the magnets to be placed on the upper, lower, left, and right sides of the same-sized generator. Through the design, modelling, and analysis of AFPM and RFPM compound generators, the generator load evaluation results rated output of 500.25 W and efficiency of 87.60%, respectively, at a rated speed of 600 rpm. By employing this complex generation system,these findings are expected to contribute to the activation of a small power generation system.