• Title/Summary/Keyword: Dermal fibroblasts

Search Result 251, Processing Time 0.031 seconds

Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70

  • Jiang, Tao;Wang, Xingang;Wu, Weiwei;Zhang, Fan;Wu, Shifeng
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2016
  • Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.

Effects of Pharmacological Modulators of $Ca^{2+}-activated\;K^+$ Channels on Proliferation of Human Dermal Fibroblast

  • Yun, Ji-Hyun;Kim, Tae-Ho;Myung, Soon-Chul;Bang, Hyo-Weon;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Employing electrophysiological and cell proliferation assay techniques, we studied the effects of $Ca^{2+}$ -activated $K^+$ channel modulators on the proliferation of human dermal fibroblasts, which is important in wound healing. Macroscopic voltage-dependent outward $K^+$ currents were found at about -40 mV stepped from a holding potential of -70 mV. The amplitude of $K^+$ current was increased by NS1619, a specific large-conductance $Ca^{2+}$-activated $K^+$ (BK) channel activator, but decreased by iberiotoxin (IBTX), a specific BK channel inhibitor. To investigate the presence of an intermediate-conductance $Ca^{2+}$-activated $K^+$ (IK) channels, we pretreated the fibroblasts with low dose of TEA to block BK currents, and added 1-EBIO (an IK activator). 1-EBIO recovered the currents inhibited by TEA. When various $Ca^{2+}$-activated $K^+$ channel modulators were added into culture media for 1∼3 days, NS1619 or 1-EBIO inhibited the cell proliferation. On the other hand, IBTX, clotrimazole or apamin, a small conductance $Ca^{2+}$-activated $K^+$ channel (SK) inhibitor, increased it. These results suggest that BK, IK, and SK channels might be involved in the proliferation of human dermal fibroblasts, which is inversely related to the channel activation.

Effects of 630-nm Organic Light-emitting Diodes on Antioxidant Regulation and Aging-related Gene Expression Compared to Light-emitting Diodes of the Same Wavelength

  • Mo, SangJoon;Kim, Eun Young;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • To investigate the aging-related physiological functions of organic light-emitting diodes (OLEDs), we examined mRNA expression changes in aging-related genes due to oxidative stress inhibition by 630-nm red light OLEDs. As a result of irradiating 630-nm OLED with an intensity of 5 mW/cm2 for 15 min, the viability of dermal fibroblasts significantly increased by 1.3-fold. In addition, reactive oxygen species generated by H2O2 were significantly reduced about 4.9-fold by irradiation with 630-nm OLED. Quantitative reverse-transcription polymerase chain reaction results showed that 630-nm OLEDs altered aging-related gene mRNA expression levels through antioxidant activity. The mRNA expression levels of matrix metalloproteinase1 (MMP1) and MMP9 decreased significantly, by about 2.2- and 2.5-fold, compared to the control group, whereas those of collagen, type I, and alpha 1 increased significantly, by 4.9-fold. The mRNA expression levels of cancer suppression genes p16 and p53 in dermal fibroblasts were also significantly reduced by 630-nm OLED irradiation, by about 1.4- and three-fold, respectively, compared to the control. Overall, it was confirmed that 630-nm OLED irradiation lowered the level of ROS formation induced by H2O2 in dermal fibroblasts, and that this antioxidant effect could regulate the mRNA expression levels of aging- and tumor suppression-related genes. This study shows a link between 630-nm OLED irradiation and anti-aging physiological functions such as antioxidant function, and suggests the potential of OLEDs as a useful light source for skin care.

Combinatorial Physical Stimulation and Synergistically-Enhanced Fibroblast Differentiation for Skin Regeneration (피부 재생능력 촉진을 위한 물리적 복합자극의 활용 연구)

  • Ko, Ung Hyun;Hong, Jungwoo;Shin, Hyunjun;Kim, Cheol Woong;Shin, Jennifer H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.8
    • /
    • pp.755-760
    • /
    • 2015
  • For proper wound healing, dermal contraction and remodeling are critical; during the natural healing process, differentiated fibroblasts called "myofibroblasts" typically undertake these functions. For severe wounds, however, a critical mass of dermal matrix and fibroblasts are lost, making self-regeneration impossible. To overcome this impairment, synthetic wound patches with embedded functional cells can be used to promote healing. In this study, we developed a polydioxanone (PDO)-based cell-embedded sheet on which dermal fibroblasts were cultured and induced for differentiation into myofibroblasts, whereby the following combinatorial physicochemical stimuli were also applied: aligned topology, electric field (EF), and growth factor. The results show that both the aligned topology and EF synergistically enhanced the expression of alpha smooth-muscle actin (${\alpha}$-SMA), a key myofibroblast marker. Our proof-of-concept (POC) experiments demonstrated the potential applicability of a myofibroblast-embedded PDO sheet as a wound patch.

Extract of Ettlia sp. YC001 Exerts Photoprotective Effects against UVB Irradiation in Normal Human Dermal Fibroblasts

  • Lee, Jeong-Ju;An, Sungkwan;Kim, Ki Bbeum;Heo, Jina;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.775-783
    • /
    • 2016
  • The identification of novel reagents that exert a biological ultraviolet (UV)-protective effect in skin cells represents an important strategy for preventing UV-induced skin aging. To this end, we investigated the potential protective effects of Ettlia sp. YC001 extracts against UV-induced cellular damage in normal human dermal fibroblasts (NHDFs). We generated four different extracts from Ettlia sp. YC001, and found that they exhibit low cytotoxicity in NHDFs. The ethyl acetate extract of Ettlia sp. YC001 markedly decreased UVB-induced cytotoxicity. Additionally, the ethyl acetate extract significantly inhibited the production of hydrogen peroxide-induced reactive oxygen species. Moreover, it inhibited UVB-induced thymine dimers, as confirmed by luciferase assay and thymine dimer dot-blot assay. Thus, the study findings suggest Ettlia sp. YC001 extract as a novel photoprotective reagent on UVB-induced cell dysfunctions in NHDFs.

Effects of human collagen α-1 type I-derived proteins on collagen synthesis and elastin production in human dermal fibroblasts

  • Hwang, Su Jin;Kim, Su Hwan;Seo, Woo-Young;Jeong, Yelin;Shin, Min Cheol;Ryu, Dongryeol;Lee, Sang Bae;Choi, Young Jin;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.329-334
    • /
    • 2021
  • Collagen type I is the most abundant form of collagen in human tissues, and is composed of two identical α-1 type I chains and an α-2 type I chain organized in a triple helical structure. A previous study has shown that human collagen α-2 type I (hCOL1A2) promotes collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs). However, the biological effects of human collagen α-1 type I (hCOL1A1) on various skin properties have not been investigated. Here, we isolate and identify the hCOL1A1-collagen effective domain (CED) which promotes collagen type I synthesis. Recombinant hCOL1A1-CED effectively induces cell proliferation and collagen biosynthesis in HDFs, as well as increased cell migration and elastin production. Based on these results, hCOL1A1-CED may be explored further for its potential use as a preventative agent against skin aging.

Enhancing Dermal Matrix Regeneration and Biomechanical Properties of $2^{nd}$ Degree-Burn Wounds by EGF-Impregnated Collagen Sponge Dressing

  • Cho Lee Ae-Ri
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1311-1316
    • /
    • 2005
  • To better define the relationship between dermal regeneration and wound contraction and scar formation, the effects of epidermal growth factor (EGF) loaded in collagen sponge matrix on the fibroblast cell proliferation rate and the dermal mechanical strength were investigated. Collagen sponges with acid-soluble fraction of pig skin were prepared and incorporated with EGF at 0, 4, and 8 $\mu$g/1.7 $cm^{2}$. Dermal fibroblasts were cultured to 80$\%$ confluence using DMEM, treated with the samples submerged, and the cell viability was estimated using MTT assay. A deep, $2^{nd}$ degree- burn of diameter 1 cm was prepared on the rabbit ear and the tested dressings were applied twice during the 15-day, post burn period. The processes of re-epithelialization and dermal regeneration were investigated until the complete wound closure day and histological analysis was performed with H-E staining. EGF increased the fibroblast cell proliferation rate. The histology showed well developed, weave-like collagen bundles and fibroblasts in EGF-treated wounds while open wounds showed irregular collagen bundles and impaired fibroblast growth. The breaking strength (944.1 $\pm$ 35.6 vs. 411.5 $\pm$ 57.0 Fmax, $gmm^{-2}$) and skin resilience (11.3 $\pm$ 1.4 vs. 6.5 $\pm$ 0.6 mJ/$mm^{2}$) were significantly increased with EGF­treated wounds as compared with open wounds, suggesting that EGF enhanced the dermal matrix formation and improved the wound mechanical strength. In conclusion, EGF-improved dermal matrix formation is related with a lower wound contraction rate. The impaired dermal regeneration observed in the open wounds could contribute to the formation of wound contraction and scar tissue development. An extraneous supply of EGF in the collagen dressing on deep, $2^{nd}$ degree-burns enhanced the dermal matrix formation.

Contraction Behavior of Collagen Gel and Fibroblats Activity in Dermal Equivalent Model

  • Yang, Eun-Kyung;Lee, Doo-Hoon;Park, Sue-Nie;Choe, Tae-Boo;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.267-271
    • /
    • 1997
  • We developed a dermal equivalent (DE) which was engineered using human dermal fibroblasts and a matrix of collagen gel. The in vitro construction of the DE was accomplished by casting a porcine collagen type I solution plus concentrated medium with isolated and cultured fibroblasts. These constructs were attached to culture dishes or left floating in culture medium. Contraction of attached gels results in decreased gel thickness without a change in gel diameter, and contraction of floating gels results in decreased gel thickness and diameter. After contraction, there was no increase in cell number in floating gels, but cells in attached gels began to increase after about 4 days of the lag phase in cell growth curve. At this lag phase, addition of fibroblast growth factor (FGF) at a concentration of $0.1{\mu}$/ml promoted cell proliferation in the attached collagen gels, but no effect in floating gels. These results indicate that the method of contraction had an influence on the extracellular matrix (ECM) organization, and this influenced not only cell growth but also fibroblast responsiveness to FGF. This suggests that attached collagen gel is more suitable as a dermal equivalent than the floating gel. And the final contracted area of attached gel is much larger than that of the floating gel since floating gel is contracted in all directions but attached gel is contracted only vertically.

  • PDF

Stimulation of the Extracellular Matrix Production in Dermal Fibroblasts by Areca catechu Extract (진피섬유모세포에서 대복피추출물의 세포외기질 합성 촉진 효과)

  • Lee, Min-Ho;Kim, Hyung-Jin;Jung, Hyun-Ah;Lee, Young-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1857-1862
    • /
    • 2013
  • Dermal fibroblasts produce the many components of the extracellular matrix (ECM) that are needed to maintain connective tissue integrity and repair tissue injuries. This study investigated the effects of Areca catechu extract (ACE) on dermal fibroblast cell activation. Cultured human dermal fibroblasts were treated with ACE, and then ECM production was determined by ELISA, Western blot and RT-PCR. ACE significantly accelerated the production of type 1 collagen, fibronectin, and transforming growth factor (TGF)-${\beta}1$ by ELISA and type 1 collagen by Western blot assay. ACE also increased the gene expression of COL1A1, TGF-${\beta}1$, keratinocyte growth factor (KGF) and insulin growth factor (IGF)-1. These results suggest that ACE has the potential to stimulate ECM production and that it might be suitable for maintaining skin texture.

Effect of Progesterone on Cultured Human Dermal Fibroblast (배양된 인체진피섬유모세포의 증식에 대한 황체호르몬의 영향)

  • Kwon, Soon Sung;Oh, Myung June;Lee, Jin Hee;Park, Jong Lim;Chang, Hak;Minn, Kyung Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.420-425
    • /
    • 2007
  • Purpose:The mechanism of scar formation is not fully understood. Fibroblast is an important cell in wound healing process. We experienced a patient who was taking progesterone orally. Upper blepharoplasty was performed on her but, wound healing was delayed. We hypothesized that progesterone was the cause of delayed wound healing and fibroblast proliferation inhibition. We investigated the effect of progesterone in vitro on human dermal fibroblasts to study the effects on fibroblast proliferation. Methods: Human dermal fibroblasts from four persons were cultured initially. Progesterone is mixed to them at various concentrations, and fibroblast cell count was measured by MTT assay method at 570 nm. We confirmed that progesterone has some inhibitory effect on fibroblast proliferation and maximal inhibitory concentration of progesterone was determined. Then fibroblasts from a total of nineteen persons were cultured and the effects of progesterone were studied. Results: The initial study showed the maximal inhibitory concentration of progesterone to be $50{\mu}g/ml$. The main study showed that progesterone had 70.9% inhibitory effect on human dermal fibroblast in vitro. Conclusion: Progesterone has inhibitory effect on cultured human dermal fibroblast proliferation in vitro.