• Title/Summary/Keyword: Dental crowns

Search Result 347, Processing Time 0.023 seconds

Comparison of three-dimensional adaptation as per the rinsing time of temporary crown manufactured using a digital light processing printer (디지털 광 조명 방식으로 제작한 임시 크라운의 세척 시간에 따른 3차원 적합도 평가)

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.334-340
    • /
    • 2020
  • Purpose: This study aimed to compare three-dimensional adaptation with the rinsing time of the temporary crown produced using the digital light processing method. Methods: The maxillary right first molar abutment was scanned with a dental scanner. A temporary crown was designed with the scanned abutment. The designed crown was made of 10 temporary crowns using a digital light processing printer. The crowns were divided into the 5-minute and 10-minute rinsing groups; 5 temporary crown washes were performed for each group. In order to obtain the internal data, each group was scanned for a temporary crown. The three-dimensional fit was measured by superimposing the scanned internal surface data and the abutment data. The average comparison of three-dimensional adaptation was analyzed using the Mann-Whitney U test. Results: The 5-minute rinsing group showed a significantly higher adaptation of 71.42±3.08 ㎛ as compared to the 10-minute rinsing group (67.52±0.92 ㎛) (p<0.05). Conclusion: When making a temporary crown with a digital light processing method, a rinsing time of 10 minutes is appropriate.

Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs

  • Kaan Orhan;Ceren Aktuna Belgin;David Manulis;Maria Golitsyna;Seval Bayrak;Secil Aksoy;Alex Sanders;Merve Onder;Matvey Ezhov;Mamat Shamshiev;Maxim Gusarev;Vladislav Shlenskii
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.199-207
    • /
    • 2023
  • Purpose: The objective of this study was to evaluate the accuracy and effectiveness of an artificial intelligence (AI) program in identifying dental conditions using panoramic radiographs(PRs), as well as to assess the appropriateness of its treatment recommendations. Materials and Methods: PRs from 100 patients(representing 4497 teeth) with known clinical examination findings were randomly selected from a university database. Three dentomaxillofacial radiologists and the Diagnocat AI software evaluated these PRs. The evaluations were focused on various dental conditions and treatments, including canal filling, caries, cast post and core, dental calculus, fillings, furcation lesions, implants, lack of interproximal tooth contact, open margins, overhangs, periapical lesions, periodontal bone loss, short fillings, voids in root fillings, overfillings, pontics, root fragments, impacted teeth, artificial crowns, missing teeth, and healthy teeth. Results: The AI demonstrated almost perfect agreement (exceeding 0.81) in most of the assessments when compared to the ground truth. The sensitivity was very high (above 0.8) for the evaluation of healthy teeth, artificial crowns, dental calculus, missing teeth, fillings, lack of interproximal contact, periodontal bone loss, and implants. However, the sensitivity was low for the assessment of caries, periapical lesions, pontic voids in the root canal, and overhangs. Conclusion: Despite the limitations of this study, the synthesized data suggest that AI-based decision support systems can serve as a valuable tool in detecting dental conditions, when used with PR for clinical dental applications.

Potential impact of metal crowns at varying distances from a carious lesion on its detection on cone-beam computed tomography scans with several protocols

  • Matheus Barros-Costa;Eduarda Helena Leandro Nascimento;Iago Filipe Correia-Dantas;Matheus L. Oliveira;Deborah Queiroz Freitas
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.49-56
    • /
    • 2024
  • Purpose: This study evaluated the impact of artifacts generated by metal crowns on the detection of proximal caries lesions in teeth at various distances using cone-beam computed tomography (CBCT). Additionally, the diagnostic impacts of tube current and metal artifact reduction (MAR) were investigated. Materials and Methods: Thirty teeth were arranged within 10 phantoms, each containing 1 first premolar, 1 second premolar, and 1 second molar. A sound first molar (for the control group) or a tooth with a metal crown was placed. Of the 60 proximal surfaces evaluated, 15 were sound and 45 exhibited enamel caries. CBCT scans were acquired using an OP300 Maxio unit (Instrumentarium, Tuusula, Finland), while varying the tube current (4, 8, or 12.5 mA) and enabling or disabling MAR. Five observers assessed mesial and distal surfaces using a 5-point scale. Multi-way analysis of variance was employed for data comparison, with P<0.05 indicating statistical significance. Results: The area under the curve (AUC) varied from 0.40 to 0.60 (sensitivity: 0.28-0.45, specificity: 0.44-0.80). The diagnostic accuracy was not significantly affected by the presence of a metal crown, milliamperage, or MAR(P>0.05). However, the overall AUC and specificity were significantly lower for surfaces near a crown (P<0.05). Conclusion: CBCT-based caries detection was not influenced by the presence of a metal crown, variations in milliamperage, or MAR activation. However, the diagnostic accuracy was low and was further diminished for surfaces near a crown. Consequently, CBCT is not recommended for the detection of incipient caries lesions.

INFLUENCE OF TOOTH SURFACE ROUGHNESS AND TYPE OF CEMENT ON RETENTION OF COMPLETE CAST CROWNS (치아표면 거칠기와 시멘트 종류가 전부주조관의 유지력에 미치는 영향)

  • Kim, Kil-Su;Song, Chang-Yong;Ahn, Seung-Geun;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.465-473
    • /
    • 1999
  • Bond strength of luting cements to dentin is a critical consideration for success of complete cast crowns. This study was performed to evaluate the relationship between surface characteristics of teeth prepared for complete cast crowns and retention of cemented restorations. Eighty artificial crowns were cast for standardized complete crown tooth preparations accomplished with the use of a special device on recently extracted human teeth. Coarse diamond(#102R, Shofu) and superfine finishing diamond(#SF102R, Shofu) burs of similar shape were used. Crowns in each group were randomly subdivided into few subgroups of 10 for luting cements selected for this study: zinc phosphate cement (FLECK' S), polycarboxylate cement (Poly-F), rein-forced glass ionomer cement (Fuji PLUS). and adhesive resin cement (Panavia 21). Retention was evaluated by measuring the tensile load required to dislodge the artificial crown from tooth preparations with an Instron testing machine, and analysed by one-way ANOVA and Student's t-test. The obtained results were as follows ; 1. When tooth preparation was done with coarse diamond bur, retentive force was diminished in order of Panavia 21 Fuji PLUS, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Fuji PLUS group and FLECK'S group(p<0.001). 2. When tooth preparation was done with superfine diamond bur, retentive force was diminished in order of Fuji PLUS, Panavia 21, FLECK'S, and Poly-F. Retentive forces showed the significant difference between Panavia 21 group and FLECK'S group(p<0.001). 3. Retentive force in coarse tooth surfaces was significantly higher than that in superfine tooth surface with all luting cements(p<0.001), and cement residues were almost retained with-in the cast crown in all groups.

  • PDF

Fracture Resistance and Stress Distribution of All Ceramic Crowns with Two Types of Finish Line on Maxillary Central Incisor (IPS Empress 도재관의 파절강도: 하악 중절치에서 절단연 삭제량과 축면 경사도에 따른 영향)

  • Nam, Young-Sung;Kim, Kyea-Soon;Jung, Young-Chan;Kim, Yu-Lee;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.3
    • /
    • pp.207-217
    • /
    • 2003
  • The purpose of this study was to compare the fracture strength of the IPS Empress ceramic crown according to the incisal depth (1.5mm, 2.0mm, 2.5mm) and axial inclination ($4^{\circ}$, $8^{\circ}$, $12^{\circ}$) of the lower central ncisor. After 10 metal dies were made for each group, the IPS Empress ceramic crowns were fabricated and each crown was cemented on each metal die with resin cement. The cemented crowns mounted on the testing jig were inclined 30 degrees and a universal testing machine was used to measure the fracture strength. The results of this study were as follows : The fracture strength of the ceramic crown with 2.0mm depth and $12^{\circ}$ inclination was the highest (648 N). Crowns of 1.5mm depth and $4^{\circ}$ inclination had the lowest strength (482 N). There were no significant differences of the fracture strength by axial inclination in same incisal depth group. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the margin irrespective of incisal depth. There had correlation between fracture strength and fractured surface area.

Marginal and internal fit of nano-composite CAD/CAM restorations

  • Park, So-Hyun;Yoo, Yeon-Jee;Shin, Yoo-Jin;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.37-43
    • /
    • 2016
  • Objectives: The purpose of this study was to compare the marginal and internal fit of nano-composite CAD-CAM restorations. Materials and Methods: A full veneer crown and an mesio-occluso-distal (MOD) inlay cavity, which were prepared on extracted human molars, were used as templates of epoxy resin replicas. The prepared teeth were scanned and CAD-CAM restorations were milled using Lava Ultimate (LU) and experimental nano-composite CAD/CAM blocks (EB) under the same milling parameters. To assess the marginal and internal fit, the restorations were cemented to replicas and were embedded in an acrylic mold for sectioning at 0.5 mm intervals. The measured gap data were pooled according to the block types and measuring points for statistical analysis. Results: Both the block type and measuring point significantly affected gap values, and their interaction was significant (p = 0.000). In crowns and inlays made from the two blocks, gap values were significantly larger in the occlusal area than in the axial area, while gap values in the marginal area were smallest (p < 0.001). Among the blocks, the restorations milled from EB had a significantly larger gap at all measuring points than those milled from LU (p = 0.000). Conclusions: The marginal and internal gaps of the two nano-composite CAD/CAM blocks differed according to the measuring points. Among the internal area of the two nano-composite CAD/CAM restorations, occlusal gap data were significantly larger than axial gap data. The EB crowns and inlays had significantly larger gaps than LU restorations.

Fracture strength of zirconia ceramic crowns according to tooth position (치아 부위에 따른 지르코니아 도재관의 파절강도)

  • Lee, In-Seob;Kim, Jeong-Mi;Dong, Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.2
    • /
    • pp.94-100
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia ceramic crowns according to tooth position. Material and methods: After 10 metal dies were made for each group, the zirconia ceramic crowns were fabricated using CAD/CAM system ($Lava^{TM}$ All-Ceramic System) and each crown was cemented on each metal die with resin cement (Rely $X^{TM}$ Unicem). The cemented zirconia ceramic crowns mounted on the testing jig were inclined with 30 degrees to the long axis of the tooth and the universal testing machine was used to measure the fracture strength. Results: 1. The fracture strength of the zirconia ceramic crown in the lower 1st molar (2963 N) had the highest and that in the lower central incisor (1035 N) had the lowest. 2. The fracture strength of zirconia ceramic crown was higher than that of the IPS Empress crowns in all tooth position. 3. The fracture mode of the crowns was similar. Most of fracture lines began at the loading area and extended through proximal surface perpendicular to the long axis of the crowns. 4. There were no significant differences on the fracture strength of the zirconia ceramic crowns according to tooth position except in premolar group. Conclusion: Within the limitations of this study, the results suggested that strength of zirconia ceramic crown is satisfactory for clinical use.

Evaluation of Titanium-nitride Coated Crown: Surface Hardness, Corrosion Resistance and Color Sustainability (타이타늄-질소 코팅된 금속관에 대한 평가: 표면 경도, 부식 저항성, 색조 안정성)

  • Kim, Hyojin;Lim, Sumin;Kim, JinYoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.3
    • /
    • pp.344-351
    • /
    • 2021
  • The purpose of this study was to compare surface hardness between titanium-nitride coated crowns (TiNCs) and stainless steel crowns (SSCs), and to evaluate the corrosion resistance and color sustainability of TiNCs. Ten TiNCs and 10 SSCs were used for the hardness test. Measurement was performed 30 times for each type of crowns, and the mean values were compared. Metallic raw material plates (before being processed into crowns) of TiNCs and SSCs were prepared for the corrosion resistance test. The total amounts of metal ion releases in the test solution were detected by inductively coupled plasma-optical emission spectrometry. Five TiNCs were subjected to the color sustainability test by applying repetitive brushing forces. The mean hardness values of TiNC group and SSC group were 395.53 ± 105.90 Hv and 278.70 ± 31.45 Hv respectively. Hardness of TiNCs were significantly higher than that of SSCs. The total amounts of metal ion releases from the materials of TiNCs and SSCs satisfied the criterion in International Organization for Standardization 22674. The results mean that TiNCs and SSCs were not harmful in an acidic environment. The golden coating was stable against the repetitive physical stimulations for a given period time.

The Application of CAD/CAM in Dentistry (임상가를 위한 특집 1 - CAD/CAM 치과적 응용)

  • Choi, Ho-Sik;Moon, Ji-Eun;Kim, Sung-Hun
    • The Journal of the Korean dental association
    • /
    • v.50 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • Dental computer-aided design (CAD) and computer-aided manufacturing (CAM) technology have rapidly progressed over the past 30 years. The technology, which can be used in the dental laboratory, the dental office and the form of production centers, has become more common in recent years. This technology is now applied to inlays, onlays, crowns, fixed partial dentures, removable partial denture frameworks, complete dentures, templates for implant installation, implant abutments, and even maxillofacial prostheses. Dentists and dental technicians, who want to use these techniques, should have certain basic knowledge about that. This article gives an overview of CAD/CAM technologies, histories and how it applies in prosthetic dentistry.

A comparison of the fidelity of various zirconia-based all-ceramic crowns fabricated with CAD/CAM systems (수종의 CAD/CAM 시스템으로 제작한 지르코니아 기반 완전도재관의 적합도 비교)

  • Kim, Sung-Jun;Jo, Kwang-Hun;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.148-155
    • /
    • 2009
  • Statement of problem: The interest in all-ceramic restorations has increased as more techniques have become available. With the introduction of machinable dental ceramics and CAD/CAM systems there is a need to evaluate the quality levels of these new fabrication techniques. Purpose: This study is to evaluate the crown fidelity(absolute marginal discrepancy and internal gap) of various zirconia-based all-ceramic crowns fabricated with different CAD/CAM(computer-assisted design/computer-assisted manufacturing) systems and conventional cast metal-ceramic crowns. Material and methods: A resin tooth of lower right second premolar was prepared. After an impression was taken, one metal master die was made. Then 40 impressions of metal master dies were taken for working dies. 10 crowns per each system were fabricated using 40 working dies. Metal-ceramic crowns were cast by using the conventional method, and Procera, Lava, and Cerec inLab crowns were fabricated with their own CAD/CAM manufactruing procedures. The vertical marginal discrepancies and internal gaps of each crown groups were measured on a metal master die without a luting agent. The results were statistically analyzed using the one-way ANOVA and Tukey's HSD test. Results: 1. Vertical marginal discrepancies were $50.6{\pm}13.9{\mu}m$ for metal-ceramic crowns, $62.3{\pm}15.7{\mu}m$ for Procera crowns, $45.3{\pm}7.9{\mu}m$ for Lava crowns, and $71.2{\pm}2.0{\mu}m$ for Cerec inLab crowns. 2. The Internal gaps were $52.6{\pm}10.1{\mu}m$ for metal-ceramic crowns, $161.7{\pm}18.5{\mu}m$ for Procera crowns, $63.0{\pm}10.2{\mu}m$ for Lava crowns, and $73.7{\pm}10.7{\mu}m$ for Cerec inLab crowns. Conclusion: 1. The vertical marginal discrepancies of, 4 crown groups were all within the clinically acceptable range($120{\mu}m$). 2. The internal gaps of LAVA, Cerec inlab, and metal-ceramic crowns were within clinically acceptable range except Procera crown($140{\mu}m$).