• Title/Summary/Keyword: Dental composite resins

Search Result 167, Processing Time 0.025 seconds

Dental Restorative Composite Resins Containing Asymmetric Spiro Orthocarbonate for the Reduction of Volumetric Shrinkage (비대칭 스파이로 오르토카보네이트가 포함된 저수축 치아 수복재)

  • 황미선;김창근
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.321-327
    • /
    • 2004
  • The applications of dental restorative composite resins containing 2,2-bis [4-(2-hydroxy-3-me-thacryloyloxy propoxy) phenyl] propane as a base resin, and triethylene glycol dimethacrylate, as a diluent, were often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, in order to reduce volumetric shrinkage of the current dental restorative composite resin, asymmetric spiro orthocarbonates were synthesized and then the characteristics of resin composites containing them were explored. The volumetric shrinkage of the dental composites containing spiro orthocarbonates was decreased approximately 45%. However, the curing characteristics and mechanical properties of the new dental composites were slightly poor than those of the commercially available dental composite.

Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin

  • Kim, Ji-Sun;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • Objectives: This study evaluated the antibacterial effect and mechanical properties of composite resins ($L_{CR}$, $M_{CR}$, $H_{CR}$) incorporating chitosan with three different molecular weights (L, Low; M, Medium; H, High). Materials and Methods: Streptococcus (S). mutans 100 mL and each chitosan powder were inoculated in sterilized 10 mL Brain-Heart Infusion (BHI) solution, and was centrifuged for 12 hr. Absorbance of the supernatent was measured at $OD_{660}$ to estimate the antibacterial activities of chitosan. After S. mutans was inoculated in the disc shaped chitosan-containing composite resins, the disc was cleansed with BHI and diluted with serial dilution method. S. mutans was spread on Mitis-salivarius bacitracin agar. After then, colony forming unit (CFU) was measured to verify the inhibitory effect on S. mutans biofilm. To ascertain the effect on the mechanical properties of composite resin, 3-point bending and Vickers hardness tests were done after 1 and 3 wk water storage, respectively. Using 2-way analysis of variance (ANOVA) and Scheffe test, statistical analysis was done with 95% significance level. Results: All chitosan powder showed inhibition effect against S. mutans. CFU number in chitosan-containing composite resins was smaller than that of control resin without chitosan. The chitosan containing composite resins did not show any significant difference in flexural strength and Vickers hardness in comparison with the control resin. However, the composite resin, $M_{CR}$ showed a slightly decreased flexural strength and the maximum load than those of control and the other composite resins $H_{CR}$ and $L_{CR}$. Conclusions: $L_{CR}$ and $H_{CR}$ would be recommended as a feasible antibacterial restorative due to its antibacterial nature and mechanical properties.

The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

  • Kamble, Vaibhav Deorao;Parkhedkar, Rambhau D.;Mowade, Tushar Krishnarao
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • PURPOSE. The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS. Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS. For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION. Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications. On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins.

Effect of water storage on flexural strength of silorane and methacrylate-based composite resins

  • Panahandeh, Narges;Torabzadeh, Hassan;Naderi, Hani;Sheikh-Al-Eslamian, Seyedeh Mahsa
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.4
    • /
    • pp.309-315
    • /
    • 2017
  • Objectives: This study assessed the effect of water storage on the flexural strength (FS) of low shrinkage composites. Materials and Methods: A total of 165 bar-shaped specimens ($2{\times}2{\times}25mm$) were fabricated of 2 low shrinkage composites (Filtek P90 [3M ESPE], GC Kalore [GC International]) and a conventional methacrylate-based composite (Filtek Z250 [3M ESPE]). The specimens were subjected to 3-point bending test at 6 time intervals, namely: immediately after curing, at 24 hours, 1 week, 1 month, 6 months, and 1 year following storage in wet and dry conditions. The FS of the specimens were measured by applying compressive load at a crosshead speed of 1.0 mm/min. Data was analyzed using 3-way analysis of variance (ANOVA) and Tukey's test. Results: Three-way ANOVA revealed significant interactions between time, type of composite, and storage condition (p = 0.001). Tukey's multiple comparison test revealed significant reductions in FS of all composites after 6 months and 1 year of storage in distilled water compared to dry condition. Conclusions: Filtek P90 showed the highest and GC Kalore showed the lowest FS after 1 year storage in distilled water. The immediate high strength of Filtek Z250 significantly decreased at 1 year and its final value was lower than that of Filtek P90.

How does duration of curing affect the radiopacity of dental materials?

  • Bejeh Mir, Arash Poorsattar;Bejeh Mir, Morvarid Poorsattar
    • Imaging Science in Dentistry
    • /
    • v.42 no.2
    • /
    • pp.89-93
    • /
    • 2012
  • Purpose : Clinicians commonly encounter cases in which it is difficult to determine whether adjacent radiopacities are normal or pathologic. The ideal radiopacity of composite resin is equal to or higher than that of the same thickness of aluminum. We aimed to investigate the possible effects of different curing times on the post-24-hour radiopacity of composite resins on digital radiographs. Materials and Methods : One mm thick samples of Filtek P60 and Clearfil resin composites were prepared and cured with three regimens of continuous 400 mW/$cm^2$ irradiance for 10, 20 and 30 seconds. Along with a 12-step aluminum step wedge, digital radiographs were captured and the radiopacities were transformed to the equivalent aluminum thicknesses. Data were compared by a general linear model and repeated-measures of ANOVA. Results : Overall, the calculated equivalent aluminum thicknesses of composite resins were increased significantly by doubling and tripling the curing times (F(2,8)=8.94, p=0.002). Notably, Bonferroni post-hoc tests confirmed that the radiopacity of the cured Filtek P60 was significantly higher at 30 seconds compared with 10 seconds (p=0.04). Although the higher radiopacity was observed by increasing the time, other comparisons showed no statistical significance (p>0.05). Conclusion : These results supported the hypothesis that the radiopacity of resin composites might be related to the duration of light curing. In addition to the current standards for radiopacity of digital images, defining a standard protocol for curing of dental materials should be considered, and it is suggested that they should be added to the current requirements for dental material.

A NEW METHOD - REAL TIME MEASUREMENT OF THE INITIAL DYNAMIC VOLUMETRIC SHRINKAGE OF COMPOSITE RESINS DURING POLYMERIZATION (복합레진의 초기 동적 체적 중합수축의 실시간 측정 -새로운 측정장치의 개발에 대한 소고-)

  • 이인복
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.2
    • /
    • pp.134-140
    • /
    • 2001
  • The polymerization shrinkage of composite resins is an important drawback although the composites have many advantages-more esthetic and conservative than metallic restoratives etc. The purposes of this research were to develop a new measurement method and to manufacture an instrument that can measure the initial dynamic volumetric shrinkage of composite resins during polymerization. The instrument was basically an electromagnetic balance that constructed with a force transducer using position sensitive photo detector(PSPD) and a negative feedback servo amplifier of proportional-derivative(PD) controller. The volumetric change of composites during polymerization was detected continuously as buoyancy change in distilled water by means of Archimedes's principle. It was converted to continuous electrical voltage signal in real time. The signal was properly conditioned and filtered and then it was stored in computer by a data acquisition(DAQ) board. By using this electronic instrument. the dynamic patterns of the polymerization shrinkage of eight commercial(Z-100, DenFil, AeliteFil, Z-250, P-60, SureFil, Synergy compact, and Tetric ceram) composite resins were measured and compared. The results were as follows. 1. From this project of developing instrument, the ability has been achieved that can acquire and process data of electrical signal transformed from various physical phenomenon by using temperature, displacement. photo. and force transducer. As a consequence, the instrumentation and measurement system used to analyze the physical characteristics of various dental materials in dental research field can be designed, manufactured and implemented in lab. 2. This instrument has some advantages. It was insensible to temperature change and could measure true dynamic volumetric shrinkage in real time without complicated process. It showed accuracy and high precision results with small standard deviation. 3. The polymerization shrinkage of composites was significantly different between brands and ranged from 2.47% to 3.89%, The order of polymerization shrinkage was as follows, in order of increasing shrinkage, SureFil, P60, Z250, Z100, Synergy compact. DenFil, Tetric ceram, and AeliteFil. 4. The polymerization shrinkage rate per unit time, dVol%/dt, showed that the instrument can provide an indirect research method for polymerization reaction kinetics.

  • PDF

In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

  • Kim, Da Hye;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.1
    • /
    • pp.39-47
    • /
    • 2017
  • Objectives: Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods: Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results: Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions: The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

Wear of Resin Composites Polymerized by Conventional Halogen Light Curing and Light Emitting Diodes Curing Units (Halogen Light Curing Unit과 Light Emitting Diodes Curing Unit을 이용하여 중합되어진 복합레진의 마멸 특성 비교)

  • Lee Kwon-Yong;Kim Hwan;Park Sung-Ho;Jung Il-Young;Jeon Seung-Beom
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.268-271
    • /
    • 2005
  • In this study, the wear characteristics of five different dental composite resins cured by conventional halogen light and LED light sources were investigated. Five different dental composite resins of Surefil, Z100, Dyract AP, Fuji II LC and Compoglass were worn against a zirconia ceramic ball using a pin-on-disk type wear tester with 15N contact force in a reciprocal sliding motion of sliding distance of 10mm/cycle at 1Hz under the room temperature dry condition. The wear variations of dental composite resins were linearly increased as the number of cycles increased. It was observed that the wear resistances of these specimens were in the order of Dyract AP > Surefil > Compoglass > Z100 > Fuji II LC. On the morphological observations by SEM, the large crack formation on the sliding track of Fuji II LC specimen was the greatest among all resin composites. Dyract AP showed less wear with few surface damage. There is no significant difference in wear performance between conventional halogen light curing and light emitting diodes curing sources. It indicates that a light emitting diodes (LED) source can replace a halogen light source as curing unit for composite resin restorations.

Effect of Immersion in Water and Thermal Cycling on the Mechanical Properties of Light-cured Composite Resins (광중합형 수복용 복합레진의 기계적 성질에 미치는 수중침적과 Thermal Cycling의 영향)

  • Bae, Tae-Sung;Kim, Tae-Jo;Kim, Hyo-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.327-336
    • /
    • 1996
  • This study was performed to investigate the effec% of immersion in water and thermal cycling on the mechanical peoperties of light cured restorative composite resins. Five commerically available light-cured composite resins(Photo Clearfil A : CA, Lite-Fil A . LF, Clearril Photo Posterior CP, Prisms AP.H.. PA, 2100 : ZH) were unto The specimens of 12 m in diameter and 0.7 m in thickness were made, and an immersion in $37^{\circ}C$ water for 7 days and a thermal cycling of 1000 cycles at 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$ baths were performed. Biaxial flexure test was conducted using the ball-on-three-ball method at the crosshead speed of 0.5mm/min. In order to investigate the deterioration of composite resins during the thermal cycling test, Weibull analysis for the biaxial flexure strengths was done. Fracture surfaces and the surfaces before and after the thermal cycling test were examined by SEM. The highest Weibull modulus value of 10.09 after thermal cycling tests which means the lowest strength variation, was observed in the CP group, and the lowest value of 4.47 was obsered in the LF Group. Biaxial flexure strengths and Knoop hardness numbers significantly decreased due to the thermal cycling ($\textit{p}$< 0.01), however, they recovered when specimens were drie4 The highest biaxial flexure strength of 125.65MPa was observed in the ZH group after the thermal cycling test, and the lowest value of 64.86MPa was observed in the CA group. Biaxial flexure strengths of ZH and CP groups were higher than those of PA, CF, and CA groups after thermal cycling test($\textit{p}$< 0.05). Knoop hardness numbers of CP group after the thermal cycling test was the highest(95.47 $\pm$ 7.35kg/$mm^2$) among the samples, while that of CA group was the lowest(30.73 $\pm$ 2.58kg/$mm^2$). Knoop hardness numbers showed the significant differences between the CP group and others after the thermal cycling test(($\textit{p}$< 0.05). Fracture surfaces showed that the composite resin failure developed along the matrix resin and the filler/resin interface region, and the cracks propagated in the conical shape from the maximum tensile stress zone.

  • PDF

Physical properties of composite resins for dental restorative (치과 수복재용 복합레진의 물리적 특성에 대한 연구)

  • Kim, Ji Yeob;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.35-39
    • /
    • 2015
  • One of the purposes of the study was to investigate and compare the physical properties(depth of light cure, degree of conversion, water absorption) of 4 kinds of composit resins prepared in this lab; Bis-GMA based, Bis-EMA based, Bis-GMA/UDMA based, and Bis-EMA/UDMA based composit. Another aim was to compare the physical properties of the composit resins with those of the commercialized products(Charmfil flow(Denkist), Quadrant flow(CAVEX)) in market. All of the composit resins and the commercialized products showed almost same values of the physical properties. It was found that all of the composit resins prepared in this lab satisfied the physical properties specified in ISO 4049.

  • PDF