DOI QR코드

DOI QR Code

In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

  • Kim, Da Hye (Department of Medical and Biological Engineering, Graduate School, Kyungpook National University) ;
  • Kwon, Tae-Yub (Department of Dental Biomaterials, School of Dentistry, Kyungpook National University)
  • Received : 2016.08.13
  • Accepted : 2016.11.16
  • Published : 2017.02.28

Abstract

Objectives: Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans) on the dental composite resins coated with three commercial surface sealants. Materials and Methods: Composite resin (Filtek Z250) discs (8 mm in diameter, 1 mm in thickness) were fabricated in a mold covered with a Mylar strip (control). In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP). The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9). Results: Group OG achieved the lowest water contact angle among all groups tested (p < 0.001). The cell surface of S. mutans tested showed hydrophobic characteristics. Group PoGo exhibited the greatest bacterial adhesion among all groups tested (p < 0.001). The sealant-coated groups showed statistically similar (groups PS and FP, p > 0.05) or significantly lower (group OG, p < 0.001) bacterial adhesion when compared with the control group. Conclusions: The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

Keywords

References

  1. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater 1997;13:258-269. https://doi.org/10.1016/S0109-5641(97)80038-3
  2. Cilli R, de Mattos MC, Honorio HM, Rios D, de Araujo PA, Prakki A. The role of surface sealants in the roughness of composites after a simulated toothbrushing test. J Dent 2009;37:970-977. https://doi.org/10.1016/j.jdent.2009.08.002
  3. Burgers R, Cariaga T, Muller R, Rosentritt M, Reischl U, Handel G, Hahnel S. Effects of aging on surface properties and adhesion of Streptococcus mutans on various fissure sealants. Clin Oral Investig 2009;13:419-426. https://doi.org/10.1007/s00784-009-0256-6
  4. Dickinson GL, Leinfelder KF, Mazer RB, Russell CM. Effect of surface penetrating sealant on wear rate of posterior composite resins. J Am Dent Assoc 1990;121:251-255. https://doi.org/10.14219/jada.archive.1990.0240
  5. dos Santos PH, Consani S, Correr Sobrinho L, Coelho Sinhoreti MA. Effect of surface penetrating sealant on roughness of posterior composite resins. Am J Dent 2003;16:197-201.
  6. Prakki A, Ribeiro IW, Cilli R, Mondelli RF. Assessing the tooth-restoration interface wear resistance of two cementation techniques: effect of a surface sealant. Oper Dent 2005;30:739-746.
  7. Ramos RP, Chimello DT, Chinelatti MA, Dibb RG, Mondelli J. Effect of three surface sealants on marginal sealing of Class V composite resin restorations. Oper Dent 2000;25:448-453.
  8. dos Santos PH, Pavan S, Suzuki TY, Briso AL, Assuncao WG, Sinhoreti MA, Correr-Sobrinho L, Consani S. Effect of fluid resins on the surface roughness and topography of resin composite restorations analyzed by atomic force microscope. J Mech Behav Biomed Mater 2011;4:433-439. https://doi.org/10.1016/j.jmbbm.2010.12.004
  9. An YH, Friedman RJ. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 1998;43:338-348. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
  10. Turkun LS, Turkun M. The effect of one-step polishing system on the surface roughness of three esthetic resin composite materials. Oper Dent 2004;29:203-211.
  11. Martin MA, Pfaller MA, Massanari RM, Wenzel RP. Use of cellular hydrophobicity, slime production, and species identification markers for the clinical significance of coagulase-negative staphylococcal isolates. Am J Infect Control 1989;17:130-135. https://doi.org/10.1016/0196-6553(89)90199-5
  12. Nostro A, Cannatelli MA, Crisafi G, Musolino AD, Procopio F, Alonzo V. Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett Appl Microbiol 2004;38:423-427. https://doi.org/10.1111/j.1472-765X.2004.01509.x
  13. Zhou L, Tong Z, Wu G, Feng Z, Bai S, Dong Y, Ni L, Zhao Y. Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Arch Oral Biol 2010;55:401-409. https://doi.org/10.1016/j.archoralbio.2010.03.013
  14. Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, Arciola CR. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials 2004;25:4457-4463. https://doi.org/10.1016/j.biomaterials.2003.11.031
  15. Kang SH, Lee HJ, Hong SH, Kim KH, Kwon TY. Influence of surface characteristics on the adhesion of Candida albicans to various denture lining materials. Acta Odontol Scand 2013;71:241-248. https://doi.org/10.3109/00016357.2012.671360
  16. Orth R, O'Brien-Simpson N, Dashper S, Walsh K, Reynolds E. An efficient method for enumerating oral spirochetes using flow cytometry. J Microbiol Methods 2010;80:123-128. https://doi.org/10.1016/j.mimet.2009.11.006
  17. Pan H, Feng J, Cerniglia CE, Chen H. Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. J Ind Microbiol Biotechnol 2011;38:1729-1738. https://doi.org/10.1007/s10295-011-0962-3
  18. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, Ma S. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent 2009;37:289-296. https://doi.org/10.1016/j.jdent.2008.12.004
  19. Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995;22:1-14.
  20. Burdz TV, Wolfe J, Kabani A. Evaluation of sputum decontamination methods for Mycobacterium tuberculosis using viable colony counts and flow cytometry. Diagn Microbiol Infect Dis 2003;47:503-509. https://doi.org/10.1016/S0732-8893(03)00138-X
  21. Gunasekera TS, Attfield PV, Veal DA. A flow cytometry method for rapid detection and enumeration of total bacteria in milk. Appl Environ Microbiol 2000;66:1228-1232. https://doi.org/10.1128/AEM.66.3.1228-1232.2000
  22. Filoche SK, Coleman MJ, Angker L, Sissons CH. A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms. J Microbiol Methods 2007;69:489-496. https://doi.org/10.1016/j.mimet.2007.02.015
  23. Cai Y, Stromme M, Welch K. Bacteria viability assessment after photocatalytic treatment. 3 Biotech 2014;4:149-157.
  24. Antonucci JM, Fowler BO, Dickens SH, Richards ND. Novel dental resins from trialkoxysilanes and dental monomers by in situ formation of oligomeric silyl ethers and silsesquioxanes. Polym Prepr 2002;43:633-634.
  25. Pereira SG, Osorio R, Toledano M, Nunes TG. Evaluation of two Bis-GMA analogues as potential monomer diluents to improve the mechanical properties of lightcured composite resins. Dent Mater 2005;21:823-830. https://doi.org/10.1016/j.dental.2005.01.018
  26. Tay FR, Pashley DH, Kapur RR, Carrilho MR, Hur YB, Garrett LV, Tay KC. Bonding BisGMA to dentin-a proof of concept for hydrophobic dentin bonding. J Dent Res 2007;86:1034-1039. https://doi.org/10.1177/154405910708601103
  27. Wilson F, Heath JR, Watts DC. Finishing composite restorative materials. J Oral Rehabil 1990;17:79-87. https://doi.org/10.1111/j.1365-2842.1990.tb01396.x
  28. Ozel E, Korkmaz Y, Attar N, Karabulut E. Effect of one-step polishing systems on surface roughness of different flowable restorative materials. Dent Mater J 2008;27:755-764. https://doi.org/10.4012/dmj.27.755
  29. Korkmaz Y, Ozel E, Attar N, Aksoy G. The influence of one-step polishing systems on the surface roughness and microhardness of nanocomposites. Oper Dent 2008;33:44-50. https://doi.org/10.2341/07-28
  30. Kim MJ, Kim YK, Kim KH, Kwon TY. Shear bond strengths of various luting cements to zirconia ceramic: surface chemical aspects. J Dent 2011;39:795-803. https://doi.org/10.1016/j.jdent.2011.08.012
  31. Hay KM, Dragila MI, Liburdy J. Theoretical model for the wetting of a rough surface. J Colloid Interface Sci 2008;325:472-477. https://doi.org/10.1016/j.jcis.2008.06.004
  32. Bollen CM, Papaioanno W, Van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 1996;7:201-211. https://doi.org/10.1034/j.1600-0501.1996.070302.x
  33. Claro-Pereira D, Sampaio-Maia B, Ferreira C, Rodrigues A, Melo LF, Vasconcelos MR. In situ evaluation of a new silorane-based composite resin's bioadhesion properties. Dent Mater 2011;27:1238-1245. https://doi.org/10.1016/j.dental.2011.08.401
  34. Kawai K, Leinfelder KF. Effect of surface-penetrating sealant on composite wear. Dent Mater 1993;9:108-113. https://doi.org/10.1016/0109-5641(93)90085-5
  35. Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J. The effect of surface roughening of polymers on measured contact angles of liquids. Colloids Surf 1984;9:319-331. https://doi.org/10.1016/0166-6622(84)80175-4
  36. Kim YK, Son JS, Kim KH, Kwon TY. Influence of surface energy parameters of dental self-adhesive resin cements on bond strength to dentin. J Adhes Sci Technol 2013;27:1778-1789. https://doi.org/10.1080/01694243.2012.761057
  37. Buergers R, Schneider-Brachert W, Hahnel S, Rosentritt M, Handel G. Streptococcal adhesion to novel low-shrink silorane-based restorative. Dent Mater 2009;25:269-275. https://doi.org/10.1016/j.dental.2008.07.011
  38. Ruttermann S, Bergmann N, Beikler T, Raab WH, Janda R. Bacterial viability on surface-modified resin-based dental restorative materials. Arch Oral Biol 2012;57:1512-1521. https://doi.org/10.1016/j.archoralbio.2012.05.005
  39. Mei L, Busscher HJ, van der Mei HC, Chen Y, de Vries J, Ren Y. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment. Eur J Oral Sci 2009;117:419-426. https://doi.org/10.1111/j.1600-0722.2009.00648.x

Cited by

  1. Evaluation of Surface Roughness and <i>Streptococcus mutans</i> Adhesion to Bulk-Fill Resin Composites Polished with Different Systems vol.09, pp.01, 2019, https://doi.org/10.4236/aim.2019.91007
  2. The Effect of Liquid Rubber Addition on the Physicochemical Properties, Cytotoxicity, and Ability to Inhibit Biofilm Formation of Dental Composites vol.14, pp.7, 2017, https://doi.org/10.3390/ma14071704
  3. Effect of surface sealant on surface roughness and bacterial adhesion of bulk-fill composites vol.29, pp.9, 2021, https://doi.org/10.1177/09673911211005586
  4. Effect of Washing Condition on the Fracture Strength, and the Degree of Conversion of 3D Printing Resin vol.11, pp.24, 2021, https://doi.org/10.3390/app112411676