• 제목/요약/키워드: Density functional theory (DFT) calculations

검색결과 126건 처리시간 0.026초

Nystatin Drug as an Effective Corrosion Inhibitor for Mild Steel in Acidic Media- An Experimental and Theoretical Study

  • Mehmeti, Valbone
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.21-31
    • /
    • 2022
  • Potentiodynamic polarization, EIS measurements, quantum chemical calculations, and molecular dynamic simulations were used to investigate the corrosion behavior of mild steel in 0.5 M aqueous hydrochloric acid medium in the presence or absence of nystatin drug. Potentiodynamic tests suggested that this molecule could act as a mixed inhibitor due to its adsorption on the mild steel surface. The objective of this study was to exploit theoretical calculations to gain a better understanding mechanism of inhibition. Calculating the adsorption behavior of the investigated molecule on Fe (1 1 0) surface was accomplished using Monte Carlo simulation. Molecules were also investigated using Density Functional Theory (DFT), specifically PBE functional, in order to identify the link between molecular structure and corrosion inhibition behavior of the compound under investigation. Adsorption energies between nystatin and iron were estimated more accurately by utilizing Molecular Mechanics calculation with Periodic Boundary Conditions (PBC). Estimated theoretical parameters significantly assisted our understanding of the corrosion inhibition mechanism exhibited by this molecule. They were found to be in accord with experimental results.

Microwave-assisted Solvent-free Synthesis of Some Dimethine Cyanine Dyes, Spectral Properties and TD-DFT/PCM Calculations

  • Zhang, Xiang-Han;Wang, Lan-Ying;Zhai, Gao-Hong;Wen, Zhen-Yi;Zhang, Zu-Xun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2382-2388
    • /
    • 2007
  • A series of dimethine cyanine dyes were synthesized in a fast, efficient and high yield by the condensation of quaternary salts with 1H-indole-3-carbaldehyde in the presence of piperidine under solvent-free microwave irradiation. The products were identified by 1H NMR, IR, UV-Vis spectra and elemental analysis. The absorption and fluorescence properties of these dyes were investigated both experimentally and theoretically. Calculations performed at a combination of time-dependent density functional theory (TD-DFT) and the polarizable continuum model (PCM) reproduced the π-π* type absorption bands of the dyes. Regression analysis was used for studying theoretical results of the absorption maxima in different solvents. Compared with experimental counterparts, estimated overall uncertainties in the absorption maxima were about ±2%.

Mg 규산염 및 (수)산화물에 대한 제일원리 내각준위 흡수 스펙트럼 계산 연구 (Ab-initio Calculations of Mg Silicate and (hydr)oxide Core-level Absorption Spectra)

  • 손상보;권기덕
    • 광물과 암석
    • /
    • 제34권2호
    • /
    • pp.121-131
    • /
    • 2021
  • 마그네슘(magnesium; Mg)은 탄산염 광물이 침전된 과거의 환경 조건을 유추하기 위한 지화학 지시자로 활용되어오고 있다. Mg를 신뢰도 높은 지화학 지시자로 활용하기 위해서는 Mg의 화학종을 근거로 한 Mg의 광물 함유 기작이 반드시 규명되어야만 하며, 관련 실험 연구들은 주로 고해상도(high resolution)의 방사광가속기(synchrotron) X-선 흡수 분광(X-ray absorption spectroscopy; XAS) 기법을 통해 Mg의 화학종을 유추한다. 그러나, Mg가 미량 함유된 광물의 XAS 스펙트럼 해석의 높은 불확실성 때문에 화학종 유추가 어려운 경우가 많다. 양자역학 밀도범함수이론(density functional theory; DFT)은 결정구조에 대한 흡수 스펙트럼을 예측할 수 있기 때문에, XAS 스펙트럼 해석의 불확실성을 줄일 수 있다. 이번 논문에서는 DFT 기반의 제일원리 내각 준위 분광법(ab initio core-level spectroscopy method)을 통해 Mg 규산염 및 (수)산화광물에 대한 Mg K-edge 흡수 스펙트럼을 계산하여 Mg의 배위 결합 환경을 나타내는 구조 인자와의 상관관계를 분석하였다. 계산 결과, DFT 계산으로 얻은 Mg 규산염 및 (수)산화물의 이론 Mg K-edge 흡수 스펙트럼은 기존 XAS 실험으로 얻어진 스펙트럼의 주요 형태를 상당 부분 재현해낼 수 있었다. 계산으로 얻은 광물의 제일원리 Mg K-edge 흡수 스펙트럼의 흡수-끝(absorption edge)과 평균 Mg-O 결합거리 및 Mg 유효배위수를 비교 분석한 결과, 약한 양의 상관관계를 보여주었다. 이번 연구 결과는 DFT 계산이 다양한 광물 내 Mg의 화학종에 대한 표준 스펙트럼 세트를 제공할 수 있는 강력한 도구임을 보여주며, 추후 탄산염 광물에 함유된 정확한 Mg의 화학종을 동정하는데 DFT 계산이 큰 역할을 할 수 있음을 제시한다.

Electronic structure of B- or N-doped graphene

  • Kim, Jae-Hee;Min, Kyung-Ah
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.412-414
    • /
    • 2014
  • In this study, we investigate atomic and electronic structure of graphene with substitutional impurities such as boron or nitrogen atom using density functional theory (DFT) calculations. To investigate the effects of substitutional impurities in graphene, we consider a ($6{\times}6$) supercell of graphene in our calculations. For detailed electronic properties of graphene, we compare the energy band structure of B- or N-doped graphene with that of pristine graphene.

  • PDF

Ab initio study of MoS2 nanostructures

  • Cha, Janghwan
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.214-216
    • /
    • 2013
  • The atomic and electronic properties of molybdenum disurfide ($MoS_2$) nanostructures are investigated through density functional theory (DFT) calculations. We find that the band gap is indirect (about 1.79 eV) and direct (about 1.84 eV) in GGA for 2-dimensional $MoS_2$ in our calculations. On the other hand, 1-dimensional armchair nanoribbons have semiconductor properties (band gap is about 0.11~0.28 eV), while 1-dimensional zigzag nanoribbons are metallic.

  • PDF

Structures and N→Si Bond Characters of 1-Fluorosilatrane and the Silatranyl Cation

  • Lee, Hyo-Sug;Bae, Cheol-Beom;Do, Young-Kyu;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.215-220
    • /
    • 2002
  • The structures of 1-fluorosilatrane and the silatranyl cation were calculated by Hartree-Fock (HF), Mofller-Plesset second order (MP2), and various density functional theory (DFT) methods using many different basis sets, demonstrating that the Si-N bonds in two species are quite different. The N${\rightarrow}$Si bond distance of 1-fluorosilatrane from the hybrid DFT calculations $({\sim}2.32{\AA})$ using the Perdew-Wang correlation functional agrees with the gas phase experimental value $(2.324{\AA})$, while other functionals yield larger distances. The MP2 bond distance (2.287${\AA}$ with 6-311$G^{\ast}$) is shorter, and the HF one (2.544 ${\AA}$ with 6-311$G^{\ast}$) larger than those of DFT calculations. The MP2 bond distance is in good agreement with experiment indicating that the electron correlations are crucial for the correct description of the N${\rightarrow}$Si interaction. The silatranyl cation is a stable local minimum on the potential energy surface in all methods employed suggesting that the cation could be a reaction intermediate. The Si-N bond length for the cation is about 1.87 ${\AA}$ for all calculations tested implying that the Si-N bond is mainly conventional. Bonding characteristics of the Si-N bond in two species derived from the natural bond orbital analysis support the above argument based on calculated bond lengths.

Virtual screening, molecular docking studies and DFT calculations on JNK3

  • Priya, dharshini;Thirumurthy, Madhavan
    • 통합자연과학논문집
    • /
    • 제15권4호
    • /
    • pp.179-186
    • /
    • 2022
  • The c-Jun N-terminal kinase (JNK3) play major role in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, cerebral ischemia and other Central Nervous System disorders. Since JNK3 is primarily stated in the brain and stimulated by stress-stimuli, this situation is conceivable that inhibiting JNK3 could be a possible treatment for the mechanisms underlying neurodegenerative diseases. In this study drugs from Zinc15 database were screened to identify the JNK3 inhibitors by Molecular docking and Density functional theory approach. Molecular docking was done by Autodock vina and the ligands were selected based on the binding affinity. Our results identified top ten novel ligands as potential inhibitors against JNK3. Molecular docking revealed that Venetoclax, Fosaprepitant and Avapritinib exhibited better binding affinity and interacting with proposed binding site residues of JNK3. Density functional theory was used to compute the values for energy gap, lowest unoccupied molecular orbital (LUMO), and highest occupied molecular orbital (HOMO). The results of Density functional theory study showed that Venetoclax, Fosaprepitant and Avapritinib serves as a lead compound for the development of JNK3 small molecule inhibitors.

Density Functional Theory (DFT) Calculations for the Geometry, Energy, and Chemical Reaction Properties of $C_4F_8$

  • 최희철;박영춘;이윤섭
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.193-193
    • /
    • 2013
  • Perfluorocarbons (PFCs) have been suggested as possible replacements for $SF_6$ and the fluorocarbons used in and emitted during technological plasma treatments because PFCs have significantly low greenhouse warming potentials. Of many PFCs, c-$C_4F_8$ and 2-$C_4F_8$ attract special attention because of their high CF2 radicallevels in commercial plasma treatments. Accordingly, several experimental and theoretical studies of these $C_4F_8$ species have been conducted, although only the geometries at their stationary states and their adiabatic electron affinities (EAs) have been determined. However, this information is not sufficient for a deep understanding of all the possible fates and roles of $C_4F_8$ species and their fragments in plasma phases. Although the performance and reliability ofeach DFT functional have been examined carefully by the development team of each functional form with respect to the training and test data sets of well-known molecular systems, no PFC was included in the data sets. So a careful additional assessment of the reliability of DFT functionals for the study of PFC systems is highly required. In order to find a DFT method appropriate to PFCs, the geometry, energy, and chemical reaction properties of $C_4F_8$ were calculated and compared with reference data.

  • PDF

Theoretical Investigation of CO2 Adsorption on Graphene

  • Lee, Kun-Joon;Kim, Seung-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3022-3026
    • /
    • 2013
  • The adsorption of carbon dioxide on graphene sheets was theoretically investigated using density functional theory (DFT) and MP2 calculations. Geometric parameters and adsorption energies were computed at various levels of theory. The $CO_2$ chemisorption energies on graphene-$C_{40}$ assuming high pressure are predicted to be 71.2-72.1 kcal/mol for the lactone systems depending on various C-O orientations at the UCAM-B3LYP level of theory. Physisorption energies of $CO_2$ on graphene were predicted to be 2.1 and 3.3 kcal/mol, respectively, at the single-point $UMP2/6-31G^{**}$ level of theory for perpendicular and parallel orientations.

유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구 (Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates)

  • 서현일;정현진;윤병진;김승준
    • 대한화학회지
    • /
    • 제63권3호
    • /
    • pp.151-159
    • /
    • 2019
  • 본 연구는 밀도 범함수 이론(DFT) 가운데 하나인 B3LYP 방법을 $6-31G^{**}$, cc-pVDZ, cc-pVTZ의 바탕함수 집합(basis set)과 함께 사용하여 전자 공여성 분자(D)로 카바졸(carbazol) 그리고 전자 구인성 분자(A)로 dicyanobenzene, diphenyl sulfone, benzonitrile 등의 조합으로 이루어진 열 활성화 지연형광(TADF) 후보 물질에 대하여 분자구조를 최적화하고 진동주파수를 계산하였다. 또한 최적화된 분자 구조에 대하여 HOMO와 LUMO 에너지 차이를 계산하였으며, 나아가 시간 의존 밀도 범함수 이론(TD-DFT)을 사용하여 분자의 최대 흡수 및 방출 파장(${\lambda}_{max}$) 그리고 단일항과 삼중항 들뜬 상태의 에너지 차이(${\Delta}E_{ST}$) 등을 계산하여 열 활성 지연형광(TADF) 소재로서의 가능성을 예측하였다.