DOI QR코드

DOI QR Code

Structures and N→Si Bond Characters of 1-Fluorosilatrane and the Silatranyl Cation

  • Lee, Hyo-Sug (Samsung Advanced Institute of Technology) ;
  • Bae, Cheol-Beom (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Do, Young-Kyu (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Lee, Yoon-Sup (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2002.02.20

Abstract

The structures of 1-fluorosilatrane and the silatranyl cation were calculated by Hartree-Fock (HF), Mofller-Plesset second order (MP2), and various density functional theory (DFT) methods using many different basis sets, demonstrating that the Si-N bonds in two species are quite different. The N${\rightarrow}$Si bond distance of 1-fluorosilatrane from the hybrid DFT calculations $({\sim}2.32{\AA})$ using the Perdew-Wang correlation functional agrees with the gas phase experimental value $(2.324{\AA})$, while other functionals yield larger distances. The MP2 bond distance (2.287${\AA}$ with 6-311$G^{\ast}$) is shorter, and the HF one (2.544 ${\AA}$ with 6-311$G^{\ast}$) larger than those of DFT calculations. The MP2 bond distance is in good agreement with experiment indicating that the electron correlations are crucial for the correct description of the N${\rightarrow}$Si interaction. The silatranyl cation is a stable local minimum on the potential energy surface in all methods employed suggesting that the cation could be a reaction intermediate. The Si-N bond length for the cation is about 1.87 ${\AA}$ for all calculations tested implying that the Si-N bond is mainly conventional. Bonding characteristics of the Si-N bond in two species derived from the natural bond orbital analysis support the above argument based on calculated bond lengths.

Keywords

References

  1. Voronkov, M. G.; Dyakov, V. M.; Kirpichenko, S. V. J. Organomet. Chem. 1982, 233, 1 https://doi.org/10.1016/S0022-328X(00)86939-9
  2. Pauling, L. Science 1994, 263, 983 https://doi.org/10.1126/science.263.5149.983
  3. Kim, M. Y.; Uh, D. S.; Kim, S.; Do, Y. Inorg. Chem. 1993, 32, 5883 https://doi.org/10.1021/ic00077a037
  4. Tandura, S. N.; Voronkov, M. G.; Alekseev, N. V. Top. Curr. Chem. 1986, 131, 99 https://doi.org/10.1007/3-540-15811-1_3
  5. Haiduc, I.; Silvestru, C. Coord. Chem. Rev. 1990, 99, 253 https://doi.org/10.1016/0010-8545(90)80065-2
  6. Shklover, V. E.; Struchkov, Y. T.; Voronkov, M. G. Main Group Metal Chem. 1988, 11, 109
  7. Shen, Q.; Hildenbrandt, R. L. J. Mol. Struct. 1980, 64, 257 https://doi.org/10.1016/0022-2860(80)80136-0
  8. Forgacs, G.; Kolonits, M.; Hargittai, I. Struct. Chem. 1990, 1, 245 https://doi.org/10.1007/BF00674268
  9. Gordon, M. S.; Carrell, M. T.; Jensen, J. H.; Davis, L. P.; Burggraf, L. W.; Guidry, R. M. Organometallics 1991, 10, 2657 https://doi.org/10.1021/om00054a028
  10. Schmidt, M. W.; Windus, T. L.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 7480 https://doi.org/10.1021/ja00133a020
  11. Csonka, G. I.; Hencsei, P. J. Organomet. Chem. 1993, 446, 99 https://doi.org/10.1016/0022-328X(93)80040-I
  12. Csonka, G. I.; Hencsei, P. J. Mol. Struct.(THEOCHEM), 1993, 283, 251 https://doi.org/10.1016/0166-1280(93)87135-Z
  13. Csonka, G. I.; Hencsei, P. J. Organomet. Chem. 1993, 454, 15 https://doi.org/10.1016/0022-328X(93)83218-K
  14. Csonka, G. I.; Hencsei, P. J. Comp. Chem. 1994, 15, 385 https://doi.org/10.1002/jcc.540150403
  15. Csonka, G. I.; Hencsei, P. J. Mol. Struct.(THEOCHEM), 1996, 362, 199 https://doi.org/10.1016/0166-1280(95)04393-4
  16. Dahl, T.; Skancke, P. N. Int. J. Quant. Chem. 1996, 60, 567 https://doi.org/10.1002/(SICI)1097-461X(1996)60:1<567::AID-QUA55>3.0.CO;2-4
  17. Belyakov, S.; Ignatovich, L.; Lukevics, E. J. Organomet. Chem. 1999, 577, 205 https://doi.org/10.1016/S0022-328X(98)01041-9
  18. Chung, G.; Kwon, O.; Kwon, Y. Inorg. Chem. 1999, 38, 197 https://doi.org/10.1021/ic980667a
  19. Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9 https://doi.org/10.1021/ar00109a003
  20. Boys, S. F. In Quantum Science of Atoms, Molecules, and Solids; Lowdin, P.-O., Ed.; Academic Press: New York, U.S.A., 1966
  21. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  22. Becke, A. D. J. Chem. Phys. 1996, 104, 1040 https://doi.org/10.1063/1.470829
  23. Adamo, C.; Barone, V. Chem. Phys. Lett. 1997, 274, 242 https://doi.org/10.1016/S0009-2614(97)00651-9
  24. Becke, A. D. J. Chem. Phys. 1993, 98, 5648 https://doi.org/10.1063/1.464913
  25. Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664 https://doi.org/10.1063/1.475428
  26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998

Cited by

  1. Silatranes: a review on their synthesis, structure, reactivity and applications vol.40, pp.3, 2011, https://doi.org/10.1039/B925899J
  2. Correlation among the Gas-Phase, Solution, and Solid-Phase Geometrical and NMR Parameters of Dative Bonds in the Pentacoordinate Silicon Compounds. 1-Substituted Silatranes vol.117, pp.25, 2013, https://doi.org/10.1021/jp4035216
  3. Radical anions of hypervalent silicon compounds: 1-substituted silatranes vol.17, pp.19, 2015, https://doi.org/10.1039/C4CP06046F
  4. Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them vol.84, pp.4, 2015, https://doi.org/10.1070/RCR4466
  5. Germanium analogs of carbenium ions vol.65, pp.3, 2016, https://doi.org/10.1007/s11172-016-1345-8
  6. Phenylhydrosilocane as a source of silatranylium cations vol.65, pp.4, 2016, https://doi.org/10.1007/s11172-016-1411-2
  7. Generation of the atrane cations by nuclear-chemical method: Quantum-chemical study vol.87, pp.6, 2017, https://doi.org/10.1134/S1070363217060032
  8. Silylium cations and their analogs: Radiochemical approach (A review) vol.35, pp.4, 2009, https://doi.org/10.1134/S1087659609040154
  9. Quantum chemical study of group 14 elements pentacoordinated derivatives—metallatranes vol.724, pp.1, 2005, https://doi.org/10.1016/j.theochem.2005.01.036
  10. Molecular precursors of mesostructured silica materials in the atrane route: A DFT/GIAO/NBO theoretical study vol.822, pp.1, 2002, https://doi.org/10.1016/j.theochem.2007.07.022
  11. Synthesis, Characterization, Reactivity, and Antibacterial Studies of Triethylammonium-3-silatranylpropyldithiocarbamate, Spectroscopic, and Quantum Mechanical Studies of 3-(Silatranyl)propylammonium vol.42, pp.6, 2002, https://doi.org/10.1080/15533174.2011.618474