DOI QR코드

DOI QR Code

Theoretical Study for Thermally Activated Delayed Fluorescence (TADF) Property in Organic Light-Emitting Diode (OLED) Candidates

유기발광소재(OLED) 후보물질의 지연형광(TADF) 성질에 대한 이론적 연구

  • 서현일 (한남대학교 생명나노과학대학 화학과) ;
  • 정현진 (한남대학교 생명나노과학대학 화학과) ;
  • 윤병진 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 김승준 (한남대학교 생명나노과학대학 화학과)
  • Received : 2018.12.31
  • Accepted : 2019.02.14
  • Published : 2019.06.20

Abstract

The TADF properties for carbazol-dicyanobenzene, carbazol-diphenyl sulfone, carbazol-benzonitrile derivatives as OLED candidate materials are theoretically investigated using density functional theory (DFT) with $6-31G^{**}$, cc-pVDZ, and cc-pVTZ basis sets. The optimized geometries, harmonic vibrational frequencies, and HOMO-LUMO energy separations are predicted at the B3LYP/$6-31G^{**}$ level of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The time dependent density functional theory (TD-DFT) calculations have been also applied to investigate the absorption and emission wavelength (${\lambda}_{max}$), energy differences (${\Delta}E_{ST}$) between excited singlet ($S_1$) and triplet ($T_1$) states of candidate materials.

본 연구는 밀도 범함수 이론(DFT) 가운데 하나인 B3LYP 방법을 $6-31G^{**}$, cc-pVDZ, cc-pVTZ의 바탕함수 집합(basis set)과 함께 사용하여 전자 공여성 분자(D)로 카바졸(carbazol) 그리고 전자 구인성 분자(A)로 dicyanobenzene, diphenyl sulfone, benzonitrile 등의 조합으로 이루어진 열 활성화 지연형광(TADF) 후보 물질에 대하여 분자구조를 최적화하고 진동주파수를 계산하였다. 또한 최적화된 분자 구조에 대하여 HOMO와 LUMO 에너지 차이를 계산하였으며, 나아가 시간 의존 밀도 범함수 이론(TD-DFT)을 사용하여 분자의 최대 흡수 및 방출 파장(${\lambda}_{max}$) 그리고 단일항과 삼중항 들뜬 상태의 에너지 차이(${\Delta}E_{ST}$) 등을 계산하여 열 활성 지연형광(TADF) 소재로서의 가능성을 예측하였다.

Keywords

JCGMDC_2019_v63n3_151_f0001.png 이미지

Figure 1. The schematic representation and molecular orbitals (HOMO, LUMO) of 2CzTPN derivatives (C56H32N6) at the B3LYP/6-31G** level of theory.

JCGMDC_2019_v63n3_151_f0002.png 이미지

Figure 2. The schematic representation and molecular orbitals (HOMO, LUMO) of para-A, B and meta-A, B (C36H24N2S1O2) at the B3LYP/6-31G** level of theory.

JCGMDC_2019_v63n3_151_f0003.png 이미지

Figure 3. The schematic representation and molecular orbitals (HOMO, LUMO) of CzBN derivatives (I-VI) at the B3LYP/cc-pVTZlevel of theory.

Table 1. HOMO, LUMO, HOMO-LUMO gap(eV) and predicted electronic spectra of C56H32N6 and C36H24N2S1O2 at the B3LYP and TDB3LYP methods with 6-31G** basis set.

JCGMDC_2019_v63n3_151_t0001.png 이미지

Table 2. HOMO, LUMO, HOMO-LUMO gap(ΔEg, eV) and predicted electronic spectra of C19H12N2 ~ C31H20N2(I-VI) at the B3LYP and TD-B3LYP methods with cc-pVTZ basis set.

JCGMDC_2019_v63n3_151_t0002.png 이미지

Table 3. The energy difference between the first excited singlet and triplet state(ΔEST) of C56H32N6 and C36H24N2S1O2 at the TD-B3LYP/ 6-31G** level of theory.

JCGMDC_2019_v63n3_151_t0003.png 이미지

Table 4. The energy difference between the first excited singlet and triplet state(ΔEST) of C19H12N2 ~ C31H20N2 (I-VI) at the TD-B3LYP/ cc-pVTZ level of theory.

JCGMDC_2019_v63n3_151_t0004.png 이미지

References

  1. Chitpakdee, C.; Namuangruk, S.; Khongpracha, P.; Jungsuttiwong, S.; Tarsang, R.; Sudyoadsuk, T.; Promarak, V. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 125, 36. https://doi.org/10.1016/j.saa.2013.12.111
  2. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson M. E.; Forrest. S. R. Nature 1998, 395, 151. https://doi.org/10.1038/25954
  3. Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931. https://doi.org/10.1002/adma.201402532
  4. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. https://doi.org/10.1038/nature11687
  5. Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nature Reviews Meterials 2018, 3(4), 18020. https://doi.org/10.1038/natrevmats.2018.20
  6. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042. https://doi.org/10.1063/1.1733929
  7. Helfrich, W.; Schneider, W. Phys. Rev. Lett. 1965, 14, 229. https://doi.org/10.1103/PhysRevLett.14.229
  8. Tang, C. W.; VanSlyke. S. A. Appl. Phys. Lett. 1987, 51, 913. https://doi.org/10.1063/1.98799
  9. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 083302. https://doi.org/10.1063/1.3558906
  10. Lee, S. Y.; Yasuda, T.; Nomura, H.; Adachi, C. Appl. Phys. Lett. 2012, 101, 093306. https://doi.org/10.1063/1.4749285
  11. Nishimoto, T.; Yasuda, T.; Lee, S. Y.; Kondo, R.; Adachi, C. Mater. Horiz. 2014, 1, 264. https://doi.org/10.1039/C3MH00079F
  12. Huang, B.; Qi, Q.; Jiang, W.; Tang, J.; Liu, Y.; Fan, W.; Yin, Z.; Shi, F.; Ban, X.; Xu, H.; Sun, Y. Dyes Pigm. 2014, 111, 135. https://doi.org/10.1016/j.dyepig.2014.06.008
  13. Gaj, M. P.; Fuentes-Hernandez, C.; Zhang, Y.; Marder, S. R.; Kippelen, B. Org. Electron. 2015, 16, 109. https://doi.org/10.1016/j.orgel.2014.10.049
  14. Ryoo, C. H.; Cho, I.; Han, J.; Yang, J.; Kwon, J. E.; Kim, S.; Jeong, H.; Lee, C.; Park, S. Y. ACS Appl. Mater. Interfaces 2017, 9, 41413. https://doi.org/10.1021/acsami.7b13158
  15. Aydemir, M.; Xu, S.; Chen, C.; Bryce, M. R.; Chi, Z.; P. Monkman, A. P. J. Phys. Chem. C 2017, 121, 17764. https://doi.org/10.1021/acs.jpcc.7b06299
  16. Matulaitis, T.; Imbrasas, P.; Kukhta, N. A.; Baronas, P.; Buciunas, T.; Banevicius, D.; Kazlauskas, K.; Grazulevicius, J. V.; Jursenas, S. J. Phys. Chem. C 2017, 121, 23618. https://doi.org/10.1021/acs.jpcc.7b08034
  17. Milian-Medina, B.; Gierschner, J. Org. Electron. 2012, 13, 985. https://doi.org/10.1016/j.orgel.2012.02.010
  18. Valchanov, G.; Ivanova, A.; Tadjer, A.; Chercka, D.; Baumgarten, M. Org. Electron. 2013, 14, 2727. https://doi.org/10.1016/j.orgel.2013.07.023
  19. Li, Q.; Xu, S.-X.; Wang, J.-L.; Xia, H.-Y.; Zhao, F.; Wang, Y.-B. Int. J. Quantum Chem. 2014, 114, 1685. https://doi.org/10.1002/qua.24746
  20. Valchanov, G.; Ivanova, A.; Tadjer, A.; Chercka, D.; Baumgarten, M. J. Phys. Chem. A 2016, 120, 6944. https://doi.org/10.1021/acs.jpca.6b06680
  21. Tu, C.; Liang, W. ACS Omega 2017, 2, 3098. https://doi.org/10.1021/acsomega.7b00514
  22. Samanta, P. K.; Kim, D.; Coropceanu, V.; Bredas, J.-L. J. Am. Chem. Soc. 2017, 139, 4042. https://doi.org/10.1021/jacs.6b12124
  23. Runge, E.; Gros, E. K. U. Phys. Rev. Lett. 1984, 52, 997. https://doi.org/10.1103/PhysRevLett.52.997
  24. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  25. (b) Becke, A. D. Phys. Rev. A 1988, 38, 3098. https://doi.org/10.1103/PhysRevA.38.3098
  26. Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 720. https://doi.org/10.1063/1.1674901
  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.