DOI QR코드

DOI QR Code

Theoretical Investigation of CO2 Adsorption on Graphene

  • Received : 2012.10.24
  • Accepted : 2013.07.21
  • Published : 2013.10.20

Abstract

The adsorption of carbon dioxide on graphene sheets was theoretically investigated using density functional theory (DFT) and MP2 calculations. Geometric parameters and adsorption energies were computed at various levels of theory. The $CO_2$ chemisorption energies on graphene-$C_{40}$ assuming high pressure are predicted to be 71.2-72.1 kcal/mol for the lactone systems depending on various C-O orientations at the UCAM-B3LYP level of theory. Physisorption energies of $CO_2$ on graphene were predicted to be 2.1 and 3.3 kcal/mol, respectively, at the single-point $UMP2/6-31G^{**}$ level of theory for perpendicular and parallel orientations.

Keywords

References

  1. Service, R. F. Science 2004, 305, 962. https://doi.org/10.1126/science.305.5686.962
  2. Rao, A. B.; Rubin, A. R. Environ. Sci. Technol. 2002, 36, 4467. https://doi.org/10.1021/es0158861
  3. Jiang, J.; Sandler, S. I. J. Am. Chem. Soc. 2005, 127, 11989. https://doi.org/10.1021/ja0424575
  4. Dillon, A C.; Jones, K. M; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377. https://doi.org/10.1038/386377a0
  5. Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286, 1127.
  6. Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
  7. Ye, Y.; Ahn, C. C.; Witham, C.; Fultz, B.; Liu, J.; Rinzler, A. G.; Colbert, D.; Smith, K. A.; Smalley, R. E. Appl. Phys. Lett. 1999, 74, 2307. https://doi.org/10.1063/1.123833
  8. Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. https://doi.org/10.1126/science.287.5453.622
  9. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. https://doi.org/10.1126/science.287.5459.1801
  10. Zhao, J. J.; Buldum, A.; Han, J.; Lu, J. P. Nanotechnology 2002, 13, 195. https://doi.org/10.1088/0957-4484/13/2/312
  11. Cinke, M.; Li, J.; Bauschlicher, C. W., Jr.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett. 2003, 376, 761. https://doi.org/10.1016/S0009-2614(03)01124-2
  12. Montoya, A.; Mondragon, F.; Truong, T. N. Carbon 2003, 41, 29. https://doi.org/10.1016/S0008-6223(02)00249-X
  13. Matranga, C.; Chen, L.; Smith, M.; Bittner, E.; Johnson, J. K.; Bockrath, B. J. Phys. Chem. B 2003, 107, 12930. https://doi.org/10.1021/jp0364654
  14. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
  15. Yim, W. L.; Byl, O.; Yates, J. T., Jr.; Johnson, J. K. J. Chem. Phys. 2004, 120, 5377. https://doi.org/10.1063/1.1648017
  16. Radovic, L. R. Carbon 2005, 43, 907. https://doi.org/10.1016/j.carbon.2004.11.011
  17. Allouche, A.; Ferro, Y. Carbon 2006, 44, 3320. https://doi.org/10.1016/j.carbon.2006.06.014
  18. Xu, S. C.; Irle, S.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. B 2006, 110, 21135. https://doi.org/10.1021/jp0642037
  19. Huang B.; Li, Z.; Liu, Z.; Zhou, G.; Hao, S.; Wu, J.; Gu, B-L.; Duan, W. J. Phys. Chem. C. 2008, 112, 13442. https://doi.org/10.1021/jp8021024
  20. Cabrera-Sanfelix, P. J. Phys. Chem. A 2009, 113, 493. https://doi.org/10.1021/jp807087y
  21. Liu, Y.; Wilcox, J. Environ. Sci. Technol. 2011, 45, 809. https://doi.org/10.1021/es102700c
  22. Mishra, A. K.; Ramaprabhu, S. AIP Advances 2011, 1, 032152. https://doi.org/10.1063/1.3638178
  23. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  24. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
  25. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011
  26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
  27. Vadali, G.; Ihm, G.; Kim, H. Y.; Cole, M. W. Surf. Sci. Rep. 1991, 12, 133.
  28. Montoya, A.; Truong, T. N.; Sarofim, A. F. J. Phys. Chem. A 2000, 104, 6108. https://doi.org/10.1021/jp000534m

Cited by

  1. Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules vol.20, pp.4, 2014, https://doi.org/10.1007/s00894-014-2170-3
  2. Adsorption Energy on Carbon Nanotubes vol.119, pp.9, 2015, https://doi.org/10.1021/jp512926n
  3. Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases vol.16, pp.16, 2015, https://doi.org/10.1002/cphc.201500557
  4. adsorption vol.3, pp.1, 2015, https://doi.org/10.1039/C4TA04808C
  5. in Micro-Mesoporous Nanographene: A Comparative Study vol.60, pp.9, 2015, https://doi.org/10.1021/acs.jced.5b00291
  6. Adsorption of Carbonaceous Materials: A Density Functional Theory Approach vol.120, pp.15, 2016, https://doi.org/10.1021/acs.jpcc.5b12090
  7. Ab Initio Study of the Adsorption of Small Molecules on Stanene vol.120, pp.26, 2016, https://doi.org/10.1021/acs.jpcc.6b04481
  8. on Graphene: A Combined TPD, XPS, and vdW-DF Study vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpcc.6b11373
  9. DFT study of CO2 and H2O co-adsorption on carbon models of coal surface vol.23, pp.6, 2017, https://doi.org/10.1007/s00894-017-3356-2
  10. Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations vol.31, pp.35, 2017, https://doi.org/10.1142/S0217984917503353
  11. Etching Behavior for Efficiently Nanosizing Graphene vol.4, pp.10, 2017, https://doi.org/10.1002/admi.201601065
  12. sensing and its cross-sensitivity with humidity vol.7, pp.36, 2017, https://doi.org/10.1039/C7RA02821K
  13. Graphene and Graphene-Based Materials in Biomedical Science vol.35, pp.8, 2018, https://doi.org/10.1002/ppsc.201800105
  14. adsorption on graphene: A thermodynamical study vol.97, pp.15, 2018, https://doi.org/10.1103/PhysRevB.97.155428
  15. Theoretical Insights into the Mechanism of CO2 Chemisorption and Subsequent CO Desorption on Char Surface with Zigzag Active Sites vol.188, pp.7, 2013, https://doi.org/10.1080/00102202.2016.1174218
  16. Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules vol.665, pp.None, 2017, https://doi.org/10.1016/j.susc.2017.08.012
  17. CO2 Adsorption Behavior of Graphite Oxide Modified with Tetraethylenepentamine vol.63, pp.1, 2013, https://doi.org/10.1021/acs.jced.7b00824
  18. Theoretical Study on Molten Alkali Carbonate Interfaces vol.34, pp.43, 2013, https://doi.org/10.1021/acs.langmuir.8b02907
  19. Desorption Kinetics of Carbon Dioxide from a Graphene-Covered Pt(111) Surface vol.123, pp.15, 2013, https://doi.org/10.1021/acs.jpca.9b00674
  20. Diffusion Monte Carlo study of $ \mathrm{O}_{2}$ adsorption on single layer graphene vol.100, pp.7, 2013, https://doi.org/10.1103/physrevb.100.075430
  21. Friction Performance and Mechanism of the Molybdenum Disulfide Film in Carbon Dioxide Atmosphere vol.9, pp.5, 2013, https://doi.org/10.1149/2162-8777/ab96aa
  22. CO/CO2 adsorption and sensing on borophene vol.2, pp.7, 2013, https://doi.org/10.1007/s42452-020-3114-4
  23. Adsorption-induced clustering of CO2 on graphene vol.22, pp.37, 2013, https://doi.org/10.1039/d0cp03482g
  24. Stone-Wales Defect and Vacancy-Assisted Enhanced Atomic Orbital Interactions Between Graphene and Ambient Gases: A First-Principles Insight vol.5, pp.48, 2020, https://doi.org/10.1021/acsomega.0c04729
  25. Transport properties of Na-decorated borophene under CO/CO2 adsorption vol.1197, pp.None, 2013, https://doi.org/10.1016/j.comptc.2021.113159
  26. Impact of adsorbent carbons and carbon surface conductivity on adsorption capacity of CO2, CH4, N2 and gas separation vol.199, pp.None, 2021, https://doi.org/10.1016/j.commatsci.2021.110572
  27. Theoretical Investigation of Carbon Dioxide Adsorption on Li+-Decorated Nanoflakes vol.26, pp.24, 2013, https://doi.org/10.3390/molecules26247688