References
- Service, R. F. Science 2004, 305, 962. https://doi.org/10.1126/science.305.5686.962
- Rao, A. B.; Rubin, A. R. Environ. Sci. Technol. 2002, 36, 4467. https://doi.org/10.1021/es0158861
- Jiang, J.; Sandler, S. I. J. Am. Chem. Soc. 2005, 127, 11989. https://doi.org/10.1021/ja0424575
- Dillon, A C.; Jones, K. M; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377. https://doi.org/10.1038/386377a0
- Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Science 1999, 286, 1127.
- Chen, P.; Wu, X.; Lin, J.; Tan, K. L. Science 1999, 285, 91. https://doi.org/10.1126/science.285.5424.91
- Ye, Y.; Ahn, C. C.; Witham, C.; Fultz, B.; Liu, J.; Rinzler, A. G.; Colbert, D.; Smith, K. A.; Smalley, R. E. Appl. Phys. Lett. 1999, 74, 2307. https://doi.org/10.1063/1.123833
- Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Science 2000, 287, 622. https://doi.org/10.1126/science.287.5453.622
- Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. https://doi.org/10.1126/science.287.5459.1801
- Zhao, J. J.; Buldum, A.; Han, J.; Lu, J. P. Nanotechnology 2002, 13, 195. https://doi.org/10.1088/0957-4484/13/2/312
- Cinke, M.; Li, J.; Bauschlicher, C. W., Jr.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett. 2003, 376, 761. https://doi.org/10.1016/S0009-2614(03)01124-2
- Montoya, A.; Mondragon, F.; Truong, T. N. Carbon 2003, 41, 29. https://doi.org/10.1016/S0008-6223(02)00249-X
- Matranga, C.; Chen, L.; Smith, M.; Bittner, E.; Johnson, J. K.; Bockrath, B. J. Phys. Chem. B 2003, 107, 12930. https://doi.org/10.1021/jp0364654
- Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
- Yim, W. L.; Byl, O.; Yates, J. T., Jr.; Johnson, J. K. J. Chem. Phys. 2004, 120, 5377. https://doi.org/10.1063/1.1648017
- Radovic, L. R. Carbon 2005, 43, 907. https://doi.org/10.1016/j.carbon.2004.11.011
- Allouche, A.; Ferro, Y. Carbon 2006, 44, 3320. https://doi.org/10.1016/j.carbon.2006.06.014
- Xu, S. C.; Irle, S.; Musaev, D. G.; Lin, M. C. J. Phys. Chem. B 2006, 110, 21135. https://doi.org/10.1021/jp0642037
- Huang B.; Li, Z.; Liu, Z.; Zhou, G.; Hao, S.; Wu, J.; Gu, B-L.; Duan, W. J. Phys. Chem. C. 2008, 112, 13442. https://doi.org/10.1021/jp8021024
- Cabrera-Sanfelix, P. J. Phys. Chem. A 2009, 113, 493. https://doi.org/10.1021/jp807087y
- Liu, Y.; Wilcox, J. Environ. Sci. Technol. 2011, 45, 809. https://doi.org/10.1021/es102700c
- Mishra, A. K.; Ramaprabhu, S. AIP Advances 2011, 1, 032152. https://doi.org/10.1063/1.3638178
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
- Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51. https://doi.org/10.1016/j.cplett.2004.06.011
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E., Jr.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
- Vadali, G.; Ihm, G.; Kim, H. Y.; Cole, M. W. Surf. Sci. Rep. 1991, 12, 133.
- Montoya, A.; Truong, T. N.; Sarofim, A. F. J. Phys. Chem. A 2000, 104, 6108. https://doi.org/10.1021/jp000534m
Cited by
- Sumanene and its adsorption properties towards CO, CO2 and NH3 molecules vol.20, pp.4, 2014, https://doi.org/10.1007/s00894-014-2170-3
- Adsorption Energy on Carbon Nanotubes vol.119, pp.9, 2015, https://doi.org/10.1021/jp512926n
- Sensing Characteristics of a Graphene-like Boron Carbide Monolayer towards Selected Toxic Gases vol.16, pp.16, 2015, https://doi.org/10.1002/cphc.201500557
- adsorption vol.3, pp.1, 2015, https://doi.org/10.1039/C4TA04808C
- in Micro-Mesoporous Nanographene: A Comparative Study vol.60, pp.9, 2015, https://doi.org/10.1021/acs.jced.5b00291
- Adsorption of Carbonaceous Materials: A Density Functional Theory Approach vol.120, pp.15, 2016, https://doi.org/10.1021/acs.jpcc.5b12090
- Ab Initio Study of the Adsorption of Small Molecules on Stanene vol.120, pp.26, 2016, https://doi.org/10.1021/acs.jpcc.6b04481
- on Graphene: A Combined TPD, XPS, and vdW-DF Study vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpcc.6b11373
- DFT study of CO2 and H2O co-adsorption on carbon models of coal surface vol.23, pp.6, 2017, https://doi.org/10.1007/s00894-017-3356-2
- Adsorption properties of chloroform molecule on graphene: Experimental and first-principles calculations vol.31, pp.35, 2017, https://doi.org/10.1142/S0217984917503353
- Etching Behavior for Efficiently Nanosizing Graphene vol.4, pp.10, 2017, https://doi.org/10.1002/admi.201601065
- sensing and its cross-sensitivity with humidity vol.7, pp.36, 2017, https://doi.org/10.1039/C7RA02821K
- Graphene and Graphene-Based Materials in Biomedical Science vol.35, pp.8, 2018, https://doi.org/10.1002/ppsc.201800105
- adsorption on graphene: A thermodynamical study vol.97, pp.15, 2018, https://doi.org/10.1103/PhysRevB.97.155428
- Theoretical Insights into the Mechanism of CO2 Chemisorption and Subsequent CO Desorption on Char Surface with Zigzag Active Sites vol.188, pp.7, 2013, https://doi.org/10.1080/00102202.2016.1174218
- Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules vol.665, pp.None, 2017, https://doi.org/10.1016/j.susc.2017.08.012
- CO2 Adsorption Behavior of Graphite Oxide Modified with Tetraethylenepentamine vol.63, pp.1, 2013, https://doi.org/10.1021/acs.jced.7b00824
- Theoretical Study on Molten Alkali Carbonate Interfaces vol.34, pp.43, 2013, https://doi.org/10.1021/acs.langmuir.8b02907
- Desorption Kinetics of Carbon Dioxide from a Graphene-Covered Pt(111) Surface vol.123, pp.15, 2013, https://doi.org/10.1021/acs.jpca.9b00674
-
Diffusion Monte Carlo study of
$ \mathrm{O}_{2}$ adsorption on single layer graphene vol.100, pp.7, 2013, https://doi.org/10.1103/physrevb.100.075430 - Friction Performance and Mechanism of the Molybdenum Disulfide Film in Carbon Dioxide Atmosphere vol.9, pp.5, 2013, https://doi.org/10.1149/2162-8777/ab96aa
- CO/CO2 adsorption and sensing on borophene vol.2, pp.7, 2013, https://doi.org/10.1007/s42452-020-3114-4
- Adsorption-induced clustering of CO2 on graphene vol.22, pp.37, 2013, https://doi.org/10.1039/d0cp03482g
- Stone-Wales Defect and Vacancy-Assisted Enhanced Atomic Orbital Interactions Between Graphene and Ambient Gases: A First-Principles Insight vol.5, pp.48, 2020, https://doi.org/10.1021/acsomega.0c04729
- Transport properties of Na-decorated borophene under CO/CO2 adsorption vol.1197, pp.None, 2013, https://doi.org/10.1016/j.comptc.2021.113159
- Impact of adsorbent carbons and carbon surface conductivity on adsorption capacity of CO2, CH4, N2 and gas separation vol.199, pp.None, 2021, https://doi.org/10.1016/j.commatsci.2021.110572
- Theoretical Investigation of Carbon Dioxide Adsorption on Li+-Decorated Nanoflakes vol.26, pp.24, 2013, https://doi.org/10.3390/molecules26247688