• Title/Summary/Keyword: Density - function Technique

Search Result 230, Processing Time 0.022 seconds

The Use of Generalized Gamma-Polynomial Approximation for Hazard Functions

  • Ha, Hyung-Tae
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1345-1353
    • /
    • 2009
  • We introduce a simple methodology, so-called generalized gamma-polynomial approximation, based on moment-matching technique to approximate survival and hazard functions in the context of parametric survival analysis. We use the generalized gamma-polynomial approximation to approximate the density and distribution functions of convolutions and finite mixtures of random variables, from which the approximated survival and hazard functions are obtained. This technique provides very accurate approximation to the target functions, in addition to their being computationally efficient and easy to implement. In addition, the generalized gamma-polynomial approximations are very stable in middle range of the target distributions, whereas saddlepoint approximations are often unstable in a neighborhood of the mean.

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

Probabilistic Remaining Life Assessment Program for Creep Crack Growth (크리프 균열성장 모델에 대한 확률론적 수명예측 프로그램)

  • Kim, Kun-Young;Shoji, Tetsuo;Kang, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.100-107
    • /
    • 1999
  • This paper describes a probabilistic remaining life assessment program for the creep crack growth. The probabilistic life assessment program is developed to increase the reliability of life assessment. The probabilistic life assessment involves some uncertainties, such as, initial crack size, material properties, and loading condition, and a triangle distribution function is used for random variable generation. The resulting information provides the engineer with an assessment of the probability of structural failure as a function of operating time given the uncertainties in the input data. This study forms basis of the probabilistic life assessment technique and will be extended to other damage mechanisms.

  • PDF

A Study for the Formulation of the Everett Function Using First Order Transition Curves (일차 전이곡선을 이용한 에버렡 함수의 정식화에 관한 연구)

  • Kim, Hong-Kyu;Jung, Hyun-Kyo;Hong, Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.3-5
    • /
    • 1996
  • The Preisach model needs density function or Everett function for the sample material to calculate the hysteresis characteristics. To obtain these functions, many experimental data obtained from the first order transition curves are required. However, it is not simple task to measure the curves. In this paper, a simple generalized technique to get the Everett function using saturation hysteresis loop and two first order transition curves is proposed. These three data makes three equations for the proposed Everett function model and we can get three variables by those equations. From the simulation, we got acceptable results.

  • PDF

A Hill-Sliding Strategy for Initialization of Gaussian Clusters in the Multidimensional Space

  • Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.5-27
    • /
    • 1985
  • A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.

Mesh Reconstruction Using Redistibution of Nodes in Sub-domains and Its Application to the Analyses of Metal Forming Problems (영역별 절점재구성을 통한 격자재구성 및 소성가공해석)

  • Hong, Jin-Tae;Yang, Dong-Yol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.255-262
    • /
    • 2007
  • In the finite element analysis of forming process, objects are described with a finite number of elements and nodes and the approximated solutions can be obtained by the variational principle. One of the shortcomings of a finite element analysis is that the structure of mesh has become inefficient and unusable because discretization error increases as deformation proceeds due to severe distortion of elements. If the state of current mesh satisfies a certain remeshing criterion, analysis is stopped instantly and resumed with a reconstructed mesh. In the study, a new remeshing algorithm using tetrahedral elements has been developed, which is adapted to the desired mesh density. In order to reduce the discretization error, desired mesh sizes in each lesion of the workpiece are calculated using the Zinkiewicz and Zhu's a-posteriori error estimation scheme. The pre-constructed mesh is constructed based on the modified point insertion technique which is adapted to the density function. The object domain is divided into uniformly-sized sub-domains and the numbers of nodes in each sub-domain are redistributed, respectively. After finishing the redistribution process of nodes, a tetrahedral mesh is reconstructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks

  • Abdelhedi, Mohamed;Aloui, Monia;Mnif, Thameur;Abbes, Chedly
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.

Generation of Three Dimensional Road Surface Profiles with Considering Coherence Relation (노면 상관도를 고려한 3차원 노면형상 생성에 관한 연구)

  • Kim, Kwang-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.917-922
    • /
    • 2009
  • This paper presents a technique to generate road surface profiles in a spatial domain using a power spectral density function. A single track power spectral density function is proposed to describe a road surface profile, which is also applicable for multi-track vehicle response analysis. The roads in lateral direction makes the relation between the coherence of the lateral tracks. The derived road surfaces are compared to ISO(International Organization for Standardization) standards. Generated road profiles are in good agreements with the target road PSD shape and measured coherence relation.

Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique (디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션)

  • 박종천;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

NUMERICAL SIMULATIONS OF FULLY NONLINEAR WAVE MOTIONS IN A DIGITAL WAVE TANK (디지털 파랑 수조 내에서의 비선형 파랑 운동의 수치시뮬레이션)

  • Park, J.C.;Kim, K.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.90-100
    • /
    • 2006
  • A digital wave tank (DWT) simulation technique has been developed by authors to investigate the interactions of fully nonlinear waves with 3D marine structures. A finite-difference/volume method and a modified marker-and-cell (MAC) algorithm have been used, which are based on the Navier-Stokes (NS) and continuity equations. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique or the Level-Set (LS) technique developed for one or two fluid layers. In this paper, some applications for various engineering problems with free-surface are introduced and discussed. It includes numerical simulation of marine environments by simulation equipments, fully nonlinear wave motions around offshore structures, nonlinear ship waves, ship motions in waves and marine flow simulation with free-surface. From the presented simulations, it seems that the developed DWT simulation technique can handle various engineering problems with free-surface and reliably predict hydrodynamic features due to the fully-nonlinear wave motions interacting with such marine structures.