Acknowledgement
Supported by : Ministere de l'Enseignement Superieur et de la Recherche Scientifique enTunisie
References
- Calvo, J.P. and Regueiro, M. (2010), "Carbonate rocks in the Mediterranean region-from classical to innovative uses of building stone", Geol. Soc. London Spec. Publ., 331(1), 27-35. https://doi.org/10.1144/SP331.3
- Chen, X., Schmitt, D.R., Kessler, J.A., Evans, J. and Kofman, R. (2015), "Empirical relations between ultrasonic P-wave velocity, porosity and Uniaxial Compressive Strength", CSEG Rec., 40(5), 24-29.
- Couvreur, J.F., Vervoort, A., King, M.S., Lousberg, E. and Thimus, J.F. (2001), "Successive cracking steps of a limestone highlighted by ultrasonic wave propagation", Geophys. Prpspect., 49(1), 71-78. https://doi.org/10.1046/j.1365-2478.2001.00242.x
- Del Rio, L.M., Jimenez, A., Lopez, F., Rosa, F.J., Rufo, M.M. and Paniagua, J.M. (2004), "Characterization and hardening of concrete with ultrasonic testing", Ultrasonics, 42(1), 527-530. https://doi.org/10.1016/j.ultras.2004.01.053
- Eberli, G.P., Baechle, G.T., Anselmetti, F.S. and Incze, M.L. (2003), "Factors controlling elastic properties in carbonate sediments and rocks", Leading Edge, 22(7), 654-660. https://doi.org/10.1190/1.1599691
- Hall, K.S. and Popovics, J.S. (2016), "Air-coupled Ultrasonic tomography of solids: 1 Fundamental development", Smart. Struct. Syst., Int. J., 17(1), 17-29. https://doi.org/10.12989/sss.2016.17.1.017
- Hernandez, M.G., Anaya, J.J., Izquierdo, M.A.G. and Ullate, L.G. (2002), "Application of micromechanics to the characterization of mortar by ultrasound", Ultrasonics, 40(1), 217-221. https://doi.org/10.1016/S0041-624X(02)00140-3
- Irfan, T.Y. (1996), "Mineralogy, fabric properties and classification of weathered granites in Hong Kong", Q. J. Eng. Geol. Hydrogeol, 29(1), 5-35. https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.02
- Kurtulus, C., Bozkurt, A. and Endes, H. (2012), "Physical and mechanical properties of serpentinized ultrabasic rocks in NW Turkey", Pure Appl. Geophys., 169(7), 1205-1215. https://doi.org/10.1007/s00024-011-0394-z
- Lafhaj, Z. and Goueygou, M. (2009), "Experimental study on sound and damaged mortar: Variation of ultrasonic parameters with porosity", Constr. Build Mater., 23(2), 953-958. https://doi.org/10.1016/j.conbuildmat.2008.05.012
- Lafhaj, Z., Goueygou, M., Djerbi, A. and Kaczmarek, M. (2006), "Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content", Cem. Concr. Res, 36(4), 625-633. https://doi.org/10.1016/j.cemconres.2005.11.009
- Lai, G.T., Rafek, A.G., Serasa, A.S., Hussin, A. and Ern, L.K. (2016), "Use of ultrasonic velocity travel time to estimate uniaxial compressive strength of granite and schist in Malaysia", Ssains Malays., 45(2), 185-193.
- Lotfi, H., Faiz, B., Moudden, A., Izbaim, D., Menou, A. and Maze, G. (2010), "Characterization of mortars with ultrasonic transducer", MJ Condensed Matter, 12(2), 131-133.
- Madhubabu, N., Singh, P.K., Kainthola, A., Mahanta, B., Tripathy, A. and Singh, T.N. (2016), "Prediction of compressive strength and elastic modulus of carbonate rocks", Measurement, 88, 202-213. https://doi.org/10.1016/j.measurement.2016.03.050
- Maev, R.G. (2008), Acoustic Microscopy: Fundamentals and Applications, John Wiley & Sons, Betz-Druck GmbH, Weinheim, Germany.
- Nicolas, A., Fortin, J., Regnet, J.B., Dimanov, A. and Gueguen, Y. (2016), "Brittle and semi-brittle behaviours of a carbonate rock: influence of water and temperature", Geophys. J. Int., 206(3), 438-456. https://doi.org/10.1093/gji/ggw154
- Ongpeng, J., Soberano, M., Oreta, A. and Hirose, S. (2017), "Artificial neural network model using Ultrasonic test results to predict compressive stress in concrete", Comput. Concrete, Int. J., 19(1), 59-68. https://doi.org/10.12989/cac.2017.19.1.059
- Peng, S. and Zhang, J. (2007), Engineering Geology for Underground Rocks, Springer Science & Business Media, Deblik, Berlin, Germany.
- Popovics, S. and Popovics, J.S. (1991), "Effect of stresses on the ultrasonic pulse velocity in concrete", Mat. Struct., 24(1), 15-23. https://doi.org/10.1007/BF02472676
- Popovics, S., Rose, J.L. and Popovics, J.S. (1990), "The behaviour of ultrasonic pulses in concrete", Cem. Concr. Res., 20(2), 259-270. https://doi.org/10.1016/0008-8846(90)90079-D
- Shariati, M., Ramli-Sulong, N.H., KH, M.M.A., Shafigh, P. and Sinaei, H. (2011), "Assessing the strength of reinforced concrete structures through ultrasonic pulse velocity and Schmidt rebound hammer tests", Sci. Res. Essays, 6(1), 213-220.
- Vasconcelos, G., Lourenco, P.B., Alves, C.A.S. and Pamplona, J. (2008), "Ultrasonic evaluation of the physical and mechanical properties of granites", Ultrasonics, 48(5), 453-466. https://doi.org/10.1016/j.ultras.2008.03.008
- Vergara, L., Miralles, R., Gosalbez, J., Juanes, F.J., Ullate, L.G., Anaya, J.J., Hernandez, M.G. and Izquierdo, M.A.G. (2001), "NDE ultrasonic methods to characterise the porosity of mortar", NDT&E INT, 34(8), 557-562. https://doi.org/10.1016/S0963-8695(01)00020-2
- Yasar, E. and Erdogan, Y. (2004), "Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks", Int. J. Rock Mech. Min. Sci, 41(5), 871-875. https://doi.org/10.1016/j.ijrmms.2004.01.012
Cited by
- Ultrasonic velocity as a tool for geotechnical parameters prediction within carbonate rocks aggregates vol.13, pp.4, 2017, https://doi.org/10.1007/s12517-020-5070-0