• Title/Summary/Keyword: UCS

Search Result 194, Processing Time 0.024 seconds

Estimating UCS of cement-grouted sand using characteristics of sand and UCS of pure grout

  • Lee, Changho;Nam, Hongyeop;Lee, Woojin;Choo, Hyunwook;Ku, Taeseo
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.343-352
    • /
    • 2019
  • For quality control and the economical design of grouted sand, the prior establishment of the unconfined compressive strength (UCS) estimating formula is very important. This study aims to develop an empirical UCS estimating formula for grouted sand based on the physical properties of sands and the UCS of cured pure grout. Four sands with varying particle sizes were grouted with both microfine cement and Ordinary Portland cement. Grouted specimens were prepared at three different relative densities and at three different water-to-cement ratios, and unconfined compression tests were performed. The results demonstrate that UCS of grouted sand can be expressed as the power function of the UCS of cured pure grout: $UCS_{grouted\;sand}/1MPa=A_{soil}{\cdot}(UCS_{pure}/1MPa)^N$. Because the exponent N strongly depends on the combination of pore area and pore size, N is expressed as the function of porosity (n) and specific surface ($S_a$). Additionally, because $S_a$ determines the area of the sand particle that cement particles can adsorb and n determines the number of cementation bondings between sand particles, $A_{soil}$ is also expressed as the function of n and $S_a$. Finally, the direct relationship between $A_{soil}$ and N is also investigated.

Prediction of concrete strength from rock properties at the preliminary design stage

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • This study aims to explore practical and useful equations for rapid evaluation of uniaxial compressive strength of concrete (UCS-C) during the preliminary design stage of aggregate selection. For this purpose, aggregates which were produced from eight different intact rocks were used in the production of concretes. Laboratory experiments involved the tests for uniaxial compressive strength (UCS-R), point load index (PLI-R), P wave velocity (UPV-R), apparent porosity (n-R), unit weight (UW-R) and aggregate impact value (AIV-R) of the rock samples. UCS-C, point load index (PLI-C) and P wave velocity (UPV-C) of concrete samples were also determined. Relationships between UCS-R-rock parameters and UCS-C-concrete parameters were developed by regression analyses. In the simple regression analyses, PLI-C, UPV-C, UCS-R, PLI-R, and UPV-R were found to be statistically significant independent variables to estimate the UCS-C. However, higher coefficients of determination (R2=0.97-1.0) were obtained by multiple regression analyses. The results of simple regression analysis were also compared to the limited number of previous studies. The strength conversion factor (k) values were found to be 14.3 and 14.7 for concrete and rock samples, respectively. It is concluded that the UCS-C can roughly be estimated from derived equations only for the specified rock types.

Estimation of Uniaxial Compressive Strength of Weak Rocks Using Needle Penetrometer (침관입시험을 이용한 연약암반의 일축압축강도 추정)

  • Kang, Seong-Seong;Obara, Yuzo;Je, Dong-Kwang;Park, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • This study is to estimate the uniaxal compressive strength (UCS) for the weak rocks using needle penetrometer test. The appropriate ratio of the artificial rocks for this test was cement (C):bentonite (B):water (W) = 1.3:0.7:2.3 or 1.5:0.5:2.0. From the relationship between needle penetration resistance (NPR) measured by needle penetrometer test and an estimated UCS, NPR and UCS tended to increase with increasing the curing period. Also from the relationship between the measured NPR and the measured UCS, NPR-UCS was linearly increased with the curing periods of 3-day to 14-day regardless of the ratio, then in the curing periods of 14-day to 28-day it was nearly constant. In conclusion, the overall relationship between NPR and UCS shows a linear relation for the most part, it means that UCS is possible to be estimated from NPR by needle penetrometer test in the case of weak rocks.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Utilization of the Unlinked Case Proportion to Control COVID-19: A Focus on the Non-pharmaceutical Interventional Policies of the Korea and Japan

  • Yeri Jeong;Sanggu Kang;Boeun Kim;Yong Jin Gil;Seung-sik Hwang;Sung-il Cho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.4
    • /
    • pp.377-383
    • /
    • 2023
  • Objectives: Korea and Japan have managed the spread of coronavirus disease 2019 (COVID-19) using markedly different policies, referred to as the "3T" and "3C" strategies, respectively. This study examined these differences to assess the roles of active testing and contact tracing as non-pharmaceutical interventions (NPIs). We compared the proportion of unlinked cases (UCs) and test positivity rate (TPR) as indicators of tracing and testing capacities. Methods: We outlined the evolution of NPI policies and investigated temporal trends in their correlations with UCs, confirmed cases, and TPR prior to the Omicron peak. Spearman correlation coefficients were reported between the proportion of UCs, confirmed cases, and TPR. The Fisher r-to-z transformation was employed to examine the significance of differences between correlation coefficients. Results: The proportion of UCs was significantly correlated with confirmed cases (r=0.995, p<0.001) and TPR (r=0.659, p<0.001) in Korea and with confirmed cases (r=0.437, p<0.001) and TPR (r=0.429, p<0.001) in Japan. The Fisher r-to-z test revealed significant differences in correlation coefficients between the proportion of UCs and confirmed cases (z=16.07, p<0.001) and between the proportion of UCs and TPR (z=2.12, p=0.034) in Korea and Japan. Conclusions: Higher UCs were associated with increases in confirmed cases and TPR, indicating the importance of combining testing and contact tracing in controlling COVID-19. The implementation of stricter policies led to stronger correlations between these indicators. The proportion of UCs and TPR effectively indicated the effectiveness of NPIs. If the proportion of UCs shows an upward trend, more testing and contact tracing may be required.

Estimation of Hoek-Brown Constant mi for the Basaltic Intact Rocks in Jeju Island (제주도 현무암의 Hoek-Brown 계수 mi의 추정)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.21-31
    • /
    • 2020
  • In this study, Hoek-Brown constants (mi) were calculated through nonlinear regression analyses using the results of the triaxial compression tests for the basaltic intact rocks in Jeju Island. The relationships of the mi with the uniaxial compressive strength (UCS), Brazilian tensile strength (BTS) and UCS/BTS of the Jeju basalts were investigated, respectively. In addition, a method that can be used in determining Hoek-Brown failure envelopes including the tensile and compressive failures of the Jeju basalts has been proposed. As results, the mi values had no clear correlations with the UCS, BTS and UCS/BTS of the Jeju basalts, but there were two strong correlations between UCS and mi/UCS, and between BTS and mi/BTS of the Jeju basalts. In addition, it was found that the tensile strengths calculated by the Hoek-Brown failure criterion underestimate the tensile strengths of the Jeju basalts through the relationship between the mi and UCS/BTS of the Jeju basalts. The method presented in this study is considered to be useful in determining the Hoek-Brown failure envelope for the tensile and compressive failures of the Jeju basalts.

Estimation of Unconfined Compressive Strength (UCS) of Microfine Cement Grouted Sand (마이크로 시멘트로 그라우팅 된 모래의 일축압축강도 예측)

  • Nam, Hongyeop;Lee, Woojin;Lee, Changho;Choo, Hyunwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.5-15
    • /
    • 2018
  • The unconfined compressive strength (UCS) test through coring is widely used to determine the reinforcement effect of the ground with grouting. However, the UCS test through coring can disturb the ground, is expensive and takes a lot of time to prepare the specimen. In this study, the factors affecting UCS of microfine cement grouted sand are evaluated and an empirical equation of UCS of microfine grouted sand is suggested. It is observed that UCS increases linearly until 28 days, however, the increasing rate of strength decreases sharply after that 28 days. The W/C ratio is dominant factor influencing UCS and UCS increases exponentially with the decrease of water/cement (W/C) ratio. Also, UCS increases linearly with increasing the relative density ranging from 30% to 70% and with decreasing median particle size. However, in case of W/C ratio=1 and K6 ($D_{50}=0.47mm$), UCS is lower than that of K4 ($D_{50}=1.08mm$) and K5 ($D_{50}=0.80mm$) due to filtration effect. Based on the experimental results, the empirical equation of UCS of microfine cement grouted sand can be expressed as the function of median particle size ($D_{50}$), porosity (n) and W/C ratio.

Design and Implementation of Conversion System Between ISO/IEC 10646 and Multi-Byte Code Set (ISO/IEC 10646과 멀티바이트 코드 세트간의 변환시스템의 설계 및 구현)

  • Kim, Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.319-324
    • /
    • 2018
  • In this paper, we designed and implemented a code conversion method between ISO/IEC 10646 and the multi-byte code set. The Universal Multiple-Octet Coded Character Set(UCS) provides codes for more than 65,000 characters, huge increase over ASCII's code capacity of 128 characters. It is applicable to the representation, transmission, interchange, processing, storage, input and presentation of the written form of the language throughout the world. Therefore, it is so important to guide on code conversion methods to their customers during customer systems are migrated to the environment which the UCS code system is used and/or the current code systems, i.e., ASCII PC code and EBCDIC host code, are used with the UCS together. Code conversion utility including the mapping table between the UCS and IBM new host code is shown for the purpose of the explanation of code conversion algorithm and its implementation in the system. The programs are successfully executed in the real system environments and so can be delivered to the customer during its migration stage from the UCS to the current IBM code system and vice versa.

Development of Korean UCS Architecture and Service Design for GCS Standardization (GCS 공통화를 위한 한국형 UCS 개발 및 서비스 설계)

  • Yoorim Choi;Sangyun Park;Chulhwan Kim;Gyeongrae Nam;So-Yeong Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.314-322
    • /
    • 2023
  • The use of unmanned aerial vehicles is rapidly increasing in order to effectively utilize limited manpower and minimize casualties on the battlefield. The requirements for ground control equipment vary depending on the operating concept and environment of the unmanned aerial system, but there are still common requirements. However, the lack of standardized system configurations to meet these common requirements makes it difficult to reuse common functions, leading to continuous acquisition costs. To solve this problem, this paper develops a Korean version of the UCS model using the UCS architecture. Furthermore, after designing elements related to service development not specified in the architecture (such as framework, communication middleware, service structure, etc.), we develop a Boilerplate to enhance developers' work efficiency based on this. The results of this study will serve as a foundation for effectively and economically carrying out the development of ground control equipment for unmanned aerial systems.

Soil stabilization of clay with lignin, rice husk powder and ash

  • Canakci, Hanifi;Aziz, Aram;Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • This article presents the result of laboratory study conducted on expansive soil specimens treated with lignin, rice husk powder (RHP) and rice husk ash (RHA). The amount of lignin produced from paper industry and RHP were varied from 0 to 20% and RHA from 0 to 10% by weight. The treated specimens were subjected to unconfined compressive strength (UCS),swelling test and Atterberg limit tests. The effect of additives on UCS and atterberg limit test results were reported. It was observed that the additives and curing duration had a significant effect on the strength value of treated specimens. Generally (except the sample treated with 20% RHP for 3-day) with increasing additive and curing duration the UCS value increases. A RHP content of 15% was found to be the optimum with regard to 3-day cure UCS.