Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.27-30
/
2001
A inventory management system of the manufacturing industry has a model of different kinds according to the objective and the situation. A inventory management system needs superior system technique in demand forecast, economical efficiency, reliability and application for stable supply of the finished goods, the raw materials and the parts. This paper proposes a demand forecast method based on fuzzy structured neural network, which uses min-operation and trapezoid membership function of fuzzy rules. So we can have an intelligent inventory management system for optimized decision-making of forecasting data with expert's opinion in fuzzy environment. This inventory management system used an intelligence agent and it could be adapted to asystemenvironmentchangeinorder.
An electricity consumption is closely related to the economic growth structure. The change of economic growth structure affects the pattern of electricity consumption widely and severely. This paper gives that the primary changing factors of electricity growth are economic growth, change of industry structure(the change of electricity consumption ratio in case of residential sector), and the effect of electricity saying. It gives a model to analyze the influence of GDP to the change of electricity consumption patterns by sector through the period of pre and post 1998(IMF, financial crisis) to observe the contribution of each factor to the growth of electricity demand. It is anticipated that this study shows the feasible scheme of economic structure to become the developed country.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.7
/
pp.584-590
/
2001
An inventory management system of manufacturing industry has a model of different kinds according to the objective and the situation. An inventory management system needs superior system technique in demand forecast, economical efficiency, reliability and application for stable supply of the finished goods, the raw materials and the parts. This paper proposes a demand forecast method based on fuzzy structured neural network, which uses min-operation and trapezoid membership function of fuzzy rules. So we can construct an intelligent inventory management system that make optimized decision-making for forecasting data with expert s opinion in fuzzy environment. The inventory management system uses intelligence agent and it could be adapted to a system environment change in order.
Forecasting accuracy is examined in the context of Michigan travel demand. Eight different annual models are used to forecast up to two years ahead, and nine different quarterly models up to four quarters. In the evaluation of annual models' performance, multiple regression performed better than the other methods in both the one year and two year forecasts. For quarterly models, Winters exponential smoothing and the Box-Jenkins method performed better than naive 1 s in the first quarter ahead, but these methods in the second, third, and fourth quarters ahead performed worse than naive 1 s. The sophisticated models did not outperform simpler models in producing quarterly forecasts. The best model, multiple regression, performed slightly better when fitted to quarterly rather than annual data: however, it is not possible to strongly recommend quarterly over annual models since the improvement in performance was slight in the case of multiple regression and inconsistent across the other models. As one would expect, accuracy declines as the forecasting time horizon is lengthened in the case of annual models, but the accuracy of quarterly models did not confirm this result.
There exist some limits when we forecast urban railway demand by traditional 4 step model. The first reason is that the model based on socioeconomic data by an administrative unit, 'Dong', yields a 'Dong' unit trip matrix. But a 'Dong' often has two or more stations. The second reason is that urban railway demand by station would be affected rather by station access area on foot than by a 'Dong' unit. So the model based on 'Dong' characteristic data have some inaccuracies in itself. Owing to the limits of the model based on 'Dong' unit data, there exits some difficulty in forecasting urban railway demand by station. So this paper studied two alternatives. The first is to forecast the demand by using the data of station access area on foot rather than 'Dong' unit data. This needs too much time and effort to collect data and analyse them, while the accuracy of the model didn't improve a lot. The second is to adjust the location of 'Dong' centroid and the length of centroid connector link. By this way we can reflect the characteristics of station access area on foot under traditional 4 step model. Comparing the expected demand to the observed data for each station, the result looks like very similar.
In this study, a model of compensation and amendment of forecasted travel demand was developed to calculate the range of values depends on the changes in the risk factors, selecting factors that might affect traffic demand changes among risk factors. Selected factors are as follows: influenced area population, the number of registrated vehicle per person, ratio of service industry workers, and city intervals. Then this model is applied to six routes of expressway and the calculated value were compensated with error rate being reflected on each quartile value with respect to influenced area population (200,000 people standards). Result from appling developed model to Cheongwon-Sangju expressway suggests that the model could compensate the error rate by more than 50%, which in turn validate the effectiveness of the model developed. Some limitations and future research agenda have also been identified.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.23
no.2
/
pp.131-138
/
2023
Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.
This study was carried out to analyze and furecast the domestic demand for plywood in Korea by regression models with time-series data for 16 years(1970-85). The results obtained were summarized as follows. 1. To analyze domestic demand for plywood, GNP, PWI and CWI were used as independant variables. The domestic demand equation was computed as follows: $^{in}DDP$=0.65186+1.29412 $^{in}GNP$-0.28385 $^{in}PWI$-1.05011 $^{in}CWI$ Where DDP : Domestic demand for plywood(1000 S/F) GNP: Gross national product (Billion won) PWI : Real wholesale price index of plywood CWI: Real wholesale price index of construction materials. 2. Among independant variables reflecting on the production activity of plywood industry, GNP was the most decisive in forecasting the domestic demand for plywood. 3. The significance can be recognized highly because the decision coefficient of the forecasting model which is obtained by using time series data is 0.9. 4. According to the estimated regression coefficients for GNP, PWI and CWI, GNP shows positive relation while PWI and CWI show negative relation. 5. An annual average increase rate of demand for plywood was 9.4 percent during expect period. Therefore, it was decreased slightly than that of 10.2 percent during sample period.
This study reports UTIS(Urban Traffic Information System), which has been generalized in developed countries through brisk research and development and is being promoted for introduction by National Police Agency and Road Traffic Authority to reduce the astronomical amount of social expenses including traffic congestion expenses. Also this study investigates the proper charges for using by the preestimate of demand and contentment according to methods of payment after the service is introduced. The results of this study are as follows. First, demand forecast model is constructed by Binary Logit Model. Second, forecast models of using aspects of UTIS service according to methods of payment are established by Ordered Probit Model. Third, the proper charges for using of UTIS service according to methods of payment are presented to the supplier in the aspects of users. For this, preferences by using aspects and methods of payment are captured. And unit elasticity of coefficient of utilization is understood through responsiveness analysis according to methods of payment.
Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.10
/
pp.2923-2934
/
2009
This paper presents study on technological forecasting of Next-Generation Display technology. Next-Generation Display technology is one of the emerging technologies lately. So databases on patent documents of this technology were analyzed first. And patent analysis was performed for finding out present technology trend. And the forecast for this technology was made by growth curves which were obtained from forecast models using patent documents. In previous study, Gompertz, Logistic, Bass were used for forecasting diffusion of demand in market. Gompertz, Logistic models which were often used for technological forecasting, too. So, two models were applied in this study. But Gompertz, Logistic models only consider internal effect of diffusion. And it is difficult to estimate maximum value of growth in two models. So, Bass model which considers both internal effect and external effect of diffusion was also applied. And maximum value of growth in Gompertz, Logistic models was estimated by Bass model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.