Journal of Korean Society of Forest Science (한국산림과학회지)
- Volume 84 Issue 2
- /
- Pages.121-130
- /
- 1995
- /
- 2586-6613(pISSN)
- /
- 2586-6621(eISSN)
Comparative Analysis of Travel Demand Forecasting Models
여행수요예측모델 비교분석
- Kim, Jong Ho (Dept. of Forest Development, Forestry Research Institute)
- 김종호 (임업연구원 산림경영부 산지개발과)
- Received : 1994.09.22
- Published : 1995.06.30
Abstract
Forecasting accuracy is examined in the context of Michigan travel demand. Eight different annual models are used to forecast up to two years ahead, and nine different quarterly models up to four quarters. In the evaluation of annual models' performance, multiple regression performed better than the other methods in both the one year and two year forecasts. For quarterly models, Winters exponential smoothing and the Box-Jenkins method performed better than naive 1 s in the first quarter ahead, but these methods in the second, third, and fourth quarters ahead performed worse than naive 1 s. The sophisticated models did not outperform simpler models in producing quarterly forecasts. The best model, multiple regression, performed slightly better when fitted to quarterly rather than annual data: however, it is not possible to strongly recommend quarterly over annual models since the improvement in performance was slight in the case of multiple regression and inconsistent across the other models. As one would expect, accuracy declines as the forecasting time horizon is lengthened in the case of annual models, but the accuracy of quarterly models did not confirm this result.
미국 미시간주의 여행수요(旅行需要)를 예측(豫測)하기 위하여 사용되어진 여러 모델들의 예측정확성(豫測正確性)이 검토되었다. 8가지의 연년(連年)모델들은 2년까지 예측하는데 그리고 9가지의 분기(分期)모델들은 4분기(分期)까지 예측하는데 사용되어 졌다. 연년(連年)모델의 예측정확성(豫測正確性) 평가(評價)에서, 중회귀(重回歸)모델은 1년과 2년을 예측(豫測)하는데 있어 다른 방법들 보다 더 정확(正確)했다. 분기(分期)모델에 있어서는, Winters' exponential smoothing와 Box-Jenkins 방법이 1 분기예측(分期豫測)에 있어 naive 1 s 보다 더 정확(正確)했으나 2분기(分期), 3분기(分期), 4분기(分期)를 예측(豫測)하는데 이 방법(方法)들은 naive 1 s 보다 정확(正確)하지 않았다. 정교(精巧)한 모델들은 분기별(分期別) 예측(豫測)을 하는데 있어서 단순(單純)한 모델들보다 더 정확(正確)하지 않았다. 연년(連年)모델과 분기(分期)모델을 이용한 1년간(年間) 예측비교(豫測比較)에서, 중회귀모형(重回歸模型)은 연간자료(年間資料)보다 분기자료(分期資料)에 적용(適用)할 때 더 좋은 결과(結果)를 얻었으나 그 차이(差異)가 미약(微弱)하며 다른 모델들은 일관성(一貫性)있게 좋은 결과(結果)를 갖지 않으므로 연년(連年)모델보다 分期모델을 사용하도록 강력하게 권장할 수 없다. 연년(連年)모델은 기대(期待)하였던 것처럼 예측기간(豫測期間)이 길어짐으로서 예측정확성(豫測正確性)이 감소(減少)하였으나 분기(分期)모델은 이같은 결과(結果)를 나타내지 않았다.