• Title/Summary/Keyword: Defect Element

Search Result 355, Processing Time 0.028 seconds

Effect of Small Surface Defects in the Starting Material on Product Quality after Drawing (원소재의 미소 표면결함이 인발공정에 미치는 영향)

  • Nam, C.H.;Lee, I.K.;Lee, J.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • In the current study, the effect of small surface defects in the starting material including roughness, indentations, or scratches, which are perpendicular to the direction of drawing, on the product quality is investigated using the finite element method. An axisymmetric defect is assumed. Such defects are defined by a cylindrical defect area and two tapered regions connecting the defect area to the non-defective area of the material. Various conditions for these initial surface defects are considered, including defect depth, defect slope and defect length. To describe the plastic deformation of the defect in detail during the simulation, local remeshing is applied. Based on the finite element results, defect disappearance maps were generated. It was found that defect disappearance is significantly dependent on the defect depth and the defect length coupled with the defect slope.

Identification of Defect Frequencies in Rolling Element Bearing Using Directional Spectra of Vibration Signals (구름 베어링의 결함 주파수 규명을 위한 방향 스펙트럼의 이용)

  • 박종포;이종원
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.393-400
    • /
    • 1999
  • Defect frequencies of rolling element bearings are experimentally investigated utilizing the two-sided directional spectra of the complex-valued vibration signals measured from the outer ring of defective bearings. The directional spectra make it possible to discern backward and forward defect frequencies. The experimental results show that the directional zoom spectrum is superior to the conventional spectrum in identification of bearing defect frequencies, in particular the inner race defect frequencies.

  • PDF

An Evaluation of the Effect of Internal Thinning Defect on the Failure Pressure of Elbow (곡관의 손상압력에 미치는 내부 감육결함의 영향 평가)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2003
  • In the present study, three-dimensional finite element analysis was performed to investigate the effects of internal wall thinning defect on the failure pressure of elbow in the piping system and to develop the failure pressure evaluation model. From the results of finite element analysis, the failure pressure was derived by employing local stress criteria, and the effects of thinning location, bend radius, and defect geometry on the failure pressure of internally wall thinned elbow were investigated. Also, based on these investigations and previous model developed to estimate the failure pressure of elbow with an external pitting defect, the failure pressure evaluation model to be applicable to the elbow containing an internal thinning defect was proposed and compared with the results of finite element analysis. The failure pressure calculated by the model agreed well with the results of finite element analysis.

A Study of Surface Defect Initiation in Groove Rolling Using Finite Element Analysis (유한요소해석을 이용한 공형 압연에서의 표면흠 발생 연구)

  • Na, D.H.;Huh, J.W.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.333-336
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No. 3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibits the generation of surface defect.

  • PDF

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Analysis of Bobbin Probe Signal in Steam Generator Tube with Bulge Defect (증기발생기 세관의 Bulge결함에 대한 보빈프로브 신호해석)

  • Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.702-704
    • /
    • 2003
  • In this paper, analysis of bobbin probe signal in steam generator tube with bulge defect on CE system 80 nuclear power plant is represented. The CE system 80 steam generator is adopted in ULJIN-4 nuclear power plant. From Maxwell's equation, the electromagnetic governing equation for eddy current problem is derived and by performing the finite element formulation the 3-dimensional finite element code with brick element is developed. For the ease of the comparison the numerical results with experimental ones, the calculated signals are adjusted by using the ASME standard 100[%] through hole signal. For analysis of the effect of variation of the bulge depth on the impedance signal 0.2[mm] and 0.4[mm] depth of bulge defect signals are calculated and analyzed. As the depth of the bulge defect is increased, the magnitude of the signal is increased, too. But the rate of the increment of the signal is less than that of the depth of defect. From the result of this paper, we can obtained the information of the effect of bulge defect on the impedance signal.

  • PDF

Effect of Back Tension in Multi-pass Drawing on the Central Bursting Defect (다단인발공정에서 후미인장응력이 중심파괴에 미치는 영향)

  • Lee, S.W.;Kim, M.C.;Shim, G.H.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.5
    • /
    • pp.291-297
    • /
    • 2012
  • In this paper, the effect of back tension in multi-pass drawing or wiredrawing on the central bursting defect is investigated using finite element predictions. A rigid-plastic finite element method was used together with the McClintock damage model. Central bursting defects under different back tension stress values ranging from 0% to 20% of the yield strength of the material were predicted and they were compared to understand the effect of the back tension stress values on the central bursting defect. It is found that the level of back tension has a strong influence on the cumulative damage. Thus, higher back tension raises the possibility of the central bursting defect occurring, even though it decreases the interfacial pressure between the die and the work piece.

Fatigue life evaluation of socket welded pipe with incomplete penetration defect: I-test and FE analysis

  • Lee, Dong-Min;Kim, Seung-Jae;Lee, Hyun-Jae;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3852-3859
    • /
    • 2021
  • This paper presents experimental and numerical analysis results regarding the effects of an incomplete penetration defect on the fatigue lives of socket welded pipes. For the experiment, four-point bending fatigue tests with various defect geometries (defect depth and circumferential length) were performed, and test results are presented in terms of stress-life data. The results showed that for circumferentially short defects, the fatigue life tends to increase with increasing crack depth, but for longer defects, the trend becomes the opposite. Finite element analysis showed that for short defects, the maximum principal stress decreases with increases in crack depth. For a longer defect, the opposite trend was found. Furthermore, the maximum principal stress tends to increase with an increase in defect length regardless of the defect depth.

Prediction of the Effect of Defect Parameters on the Thermal Contrast Evolution during Flash Thermography by Finite Element Method

  • Yuan, Maodan;Wu, Hu;Tang, Ziqiao;Kim, Hak-Joon;Song, Sung-Jin;Zhang, Jianhai
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • A 3D model based on the finite element method (FEM) was built to simulate the infrared thermography (IRT) inspection process. Thermal contrast is an important parameter in IRT and was proven to be a function of defect parameters. Parametric studies were conducted on internal defects with different depths, thicknesses, and orientations. Thermal contrast evolution profiles with respect to the time of the defect and host material were obtained through numerical simulation. The thermal contrast decreased with defect depth and slightly increased with defect thickness. Different orientations of thin defects were detected with IRT, but doing so for thick defects was difficult. These thermal contrast variations with the defect depth, thickness, and orientation can help in optimizing the experimental process and interpretation of data from IRT.

A Study on Proper Location of Welding Defect in Three Point Bend Testing with MDPE Pipe

  • Lai, Huan Sheng;Yoon, Kee Bong;Kil, Seong Hee
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Welding defects affect the performance of welded pipe joints. In this study, a three point bend test of welded steel and medium density polyethylene (MDPE) pipe joints with defects of various defect locations and defect materials was studied using the finite element method. The defect was assumed to be located at 12 o'clock, 3 o'clock or 6 o'clock direction. The results showed that pipes failed more easily on the compression side due to stress or local buckling. The air defect was more dangerous than the steel defect if the defect was located in the compression side; otherwise, the defect material effect on the integrity of pipes was ignorable. It is argued that the integrity of pipes with defects in the compression side is weaker than that in other regions, and the defect should be located in the compression side or the 12 o'clock position in the three point bend test to maximize the effect of defect existence on the pipe structural integrity.