DOI QR코드

DOI QR Code

Effect of Back Tension in Multi-pass Drawing on the Central Bursting Defect

다단인발공정에서 후미인장응력이 중심파괴에 미치는 영향

  • 이성원 (경상대학교 대학원 기계공학과) ;
  • 김민철 (경상대학교 대학원 기계공학과) ;
  • 심규하 (경상대학교 대학원 기계공학과) ;
  • 전만수 (경상대학교 공학부)
  • Received : 2012.05.02
  • Accepted : 2012.07.19
  • Published : 2012.08.01

Abstract

In this paper, the effect of back tension in multi-pass drawing or wiredrawing on the central bursting defect is investigated using finite element predictions. A rigid-plastic finite element method was used together with the McClintock damage model. Central bursting defects under different back tension stress values ranging from 0% to 20% of the yield strength of the material were predicted and they were compared to understand the effect of the back tension stress values on the central bursting defect. It is found that the level of back tension has a strong influence on the cumulative damage. Thus, higher back tension raises the possibility of the central bursting defect occurring, even though it decreases the interfacial pressure between the die and the work piece.

Keywords

References

  1. H. C. Jennison, 1930, Certain Types of Defects in Copper Wire Caused by Improper Dies and Drawing Practice, Proc. Inst. Metal Div. AIME., No. 89, pp. 121-139.
  2. B. Avitzur, 1968, Analysis of Central Bursting Defects in Extrusion and Wire Drawing, J. Eng. Ind., Trans. ASME., Vol. 90, No. 1, pp. 79-91. https://doi.org/10.1115/1.3604608
  3. S. Norasethasopon, K. Yoshida, 2008, Prediction of Chevron Crack Initiation in Inclusion Copper Shaped-Wire Drawing, Eng. Fail. Anal., Vol. 15, No. 4, pp. 378-393. https://doi.org/10.1016/j.engfailanal.2007.01.003
  4. D. C. Ko, B. M. Kim, 2000, The Prediction of Central Burst Defects in Extrusion and Wire Drawing, J. Mat. Proc. Tech., Vol. 90, No. 102, pp. 19-24.
  5. K. Saanouni, J. F. Mariage, A. Cherouat, P. Lestriez, 2004, Numerical Prediction of Discontinuous Central Bursting in Axisymmetric Forward Extrusion by Continuum Damage Mechanics, Comp. Struct., Vol. 82, No. 72, pp. 2309-2332. https://doi.org/10.1016/j.compstruc.2004.05.018
  6. C. Soyarslan, A. E. Tekkaya, U. Akyuz, 2008, Application of Continuum Damage Mechanics in Discontinuous Crack Formation: Forward Extrusion Chevron Predictions, ZAMM.Z. Angew. Math. Mech., Vol. 88, No. 6, pp. 436-453. https://doi.org/10.1002/zamm.200800013
  7. C. Labergere, P. Lestriez, K. Saanouni, A. Rassineux, 2009, Numerical Simulation of Bursting in Extrusion Process Using Finite Viscoplasticity with Ductile Damage and Thermal Effects, Int. J. Mater. Form., Vol. 2, pp. 88-92.
  8. K. Komori, 2003, Effect of Ductile Fracture Criteria on Chevron Crack Formation and Evolution in Drawing, Int. J. Mech. Sci., Vol. 45, No. 1, pp. 141-160. https://doi.org/10.1016/S0020-7403(03)00035-3
  9. H. Cho, H. H. Jo, S. G. Lee, B. M. Kim, Y. J. Kim, 2002, Effect of Reduction Ratio, Inclusion Size and Distance between Inclusions on Wire Breaks in Cu Fine Wiredrawing, J. Mat. Proc. Tech., Vol. 130-131, pp. 416-420. https://doi.org/10.1016/S0924-0136(02)00719-7
  10. P. J. McAllen, P. Phelan, 2007, Numerical Analysis of Axisymmetric Wire Drawing by Means of a Coupled Damage Model, J. Mat. Proc. Tech., Vol. 183, No. 2-3, pp. 210-18. https://doi.org/10.1016/j.jmatprotec.2006.10.014
  11. F. Ahmadi, M. Farzin, 2008, Investigating Geometric and Friction Conditions Causing Chevron Cracks in Wire Drawing Process using FEM, Steel Research Int., Vol. 79, No. 1-2, pp. 382-388. https://doi.org/10.1002/srin.200806142
  12. S. E. Clift, P. Hartley, C. E. N. Sturgess, G. W. Rowe, 1990, Fracture Prediction in Plastic Deformation Processes, Int. J. Mech. Sci., Vol. 32, No. 1, pp. 1-17. https://doi.org/10.1016/0020-7403(90)90148-C
  13. J. C. Gelin, A. Moisan, 1990, Finite Element Analysis of Ductile Fracture and Defects Formation in Cold and Hot Forging, CIRP Ann., Vol. 39, No. 1, pp. 215-218. https://doi.org/10.1016/S0007-8506(07)61038-5
  14. K. Komori, 1999, Simulation of Chevron Crack Formation and Evolution in Drawing, Int. J. Mech. Sci., Vol. 41, No. 12, pp. 1499-1513. https://doi.org/10.1016/S0020-7403(98)00101-5
  15. S. G. Bae, Y. S. Yang, D. Y. Ban, C. G. Park, 2006, The Effects of Die Design and Die Series on the Surface Residual Stress of Cold Drawn Eutectoid Steel Wire, Trans. Mater. Process., Vol. 15, No. 2, pp. 153-157. https://doi.org/10.5228/KSPP.2006.15.2.153
  16. D. H. Kim, D. J. Kim, B. M. Kim, 1998, Process Design of Multi-Step Wire Drawing using Artificial Neural Network, Trans. Mater. Process., Vol. 7, No. 2, pp. 127-138.
  17. L. M. Kachanov, 1986, Introduction to Continuum Damage Mechanics, Mechanics of Elastic Stability, Kluwer Academic Publishers, USA.
  18. M. S. Joun, M. C. Kim, D. J. Yoon, H. J. Choi, Y. H. Son, 2011, MSEC 2011, ASME., New York, USA, pp. 169-174.
  19. F. A. McClintock, 1968, A Criterion for Ductile Fracture by the Growth of Hole, J. Appl. Mech., Vol. 35, pp. 363-371. https://doi.org/10.1115/1.3601204
  20. M. C. Kim, J. G. Eom, S. T. Ahn, M. S. Joun, 2011, Proc. Kor. Soc. Tech. Plast. Fall Conf., Kor. Soc. Tech. Plast., Seoul, Korea, pp. 73-75.
  21. M. S. Joun, J. G.. Eom, M. C. Lee, 2008, A New Method for Acquiring True Stress-strain Curves Over a Large Range of Strains using a Tensile Test and Finite Element Method, Mech. Mater., Vol. 40, No. 7, pp. 586-593. https://doi.org/10.1016/j.mechmat.2007.11.006