• Title/Summary/Keyword: Defect Density

Search Result 470, Processing Time 0.033 seconds

alysis by C-1 Finite Element Method (C-1 유한 요소법에 의한 자계해석에 관한 연구)

  • 임달호;김생수;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.18-24
    • /
    • 1988
  • Up to date, C-0 Finite Element Method which is the means for analyzing electric machinery can not be got the precision magnetic flux density because the magnetic flus density has the discontinuity in the interelement. To supplement this defect, we propose the C-1 finite element method of 9 D.O.F. in this paper. In this method, the vector potential and the magnetic flux density are continuous on the interelement and direction derivative of potential would be an unknown value. We developed the algorithm to apply this method. For examining the utility, we applied this method to analytic model and compared with the result of C-0 Finite Element Method using linear element.

  • PDF

Microstructure and Electrical Properties of W-doped $\textrm{TiO}_2$ (W를 첨가한 $\textrm{TiO}_2$의 미세구조 및 전기적 성질)

  • Baek, Seung-Bong;Lee, Sun-Il;Kim, Myeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • The electrical conductivity of TiO$_2$ doped with 0.05~1.5mol% WO$_3$ was measured in the oxygen partial pressure range of 10\ulcorner~10\ulcorner atm and temperature range of 1100~130$0^{\circ}C$ to investigate the defect types and the electrical properties. The grain size and density were increased as the liquid phase was formed by the doped WO$_3$. The secondary phase and WO$_3$peaks at the sample doped up to 4.0 mol% were not detected from the XRD results. The data(log$\sigma$/logPo$_2$) over 110$0^{\circ}C$ were divided into the four regions. From these experimental results, we proposed the following defect regions. 1) Magneli phase(extended defect), 2) Reduced rutile region which is similar to the behavior of undoped rutile, 3) Nearly stoichiometric Ti\ulcornerW\ulcornerO$_2$region in which extra charge of W\ulcorner cation is expected to be compensated by an electron, 4) Overstoichiometric Ti\ulcornerW\ulcornerO\ulcorner region which is a metal deficiency not to be observed in pure TiO$_2$. The electrical conductivity of w-doped TiO$_2$ was influenced by the measuring temperature, oxygen partial pressure, and the dopig content.

  • PDF

Improvement of Defect Density by Slurry Fitter Installation in the CMP Process (CMP 공정에서 슬러리 필터설치에 따른 결함 밀도 개선)

  • Kim, Chul-Bok;Seo, Yong-Jin;Seo, Sang-Yong;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.30-33
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process has been widely used to planarize dielectrics, which can apply to employed in integrated circuits for sub-micron technology. Despite the increased use of CMP process, it is difficult to accomplish the global planarization of free-defects in inter-level dielectrics (ILD). Especially, defects like micro-scratch lead to severe circuit failure, and affects yield. CMP slurries can contain particles exceeding $1{\mu}m$ size, which could cause micro-scratch on the wafer surface. The large particles in these slurries may be caused by particle agglomeration in slurry supply line. To reduce these defects, slurry filtration method has been recommended in oxide CMP. In this work, we have studied the effects of filtration and the defect trend as a function of polished wafer count using various filters in inter-metal dielectric(IMD)-CMP. The filter installation in CMP polisher could reduce defect after IMD-CMP. As a result of micro-scratches formation, it shows that slurry filter plays an important role in determining consumable pad lifetime.

  • PDF

Light Induced Degradation in Crystalline Si Solar Cells (결정질 실리콘 태양전지의 광열화 현상)

  • Tark, Sung-Ju;Kim, Young-Do;Kim, Soo-Min;Park, Sung-Eun;Kim, Dong-Hwan
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.24-34
    • /
    • 2012
  • The main issue of boron doped p-type czochralski-grown silicon solar cells is the degradation when they are exposed to light or minority carriers injection. This is due to the meta-stable defect such as boron-oxygen in the Cz-Si material. Although a clear explanation is still researching, recent investigations have revealed that the Cz-Si defect is related with the boron and the oxygen concentration. They also revealed how these defects act a recombination centers in solar cells using density function theory (DFT) calculation. This paper reviews the physical understanding and gives an overview of the degradation models. Therefore, various methods for avoiding the light-induced degradation in Cz-Si solar cells are compared in this paper.

Structural Evolution and Electrical Properties of Highly Active Plasma Process on 4H-SiC

  • Kim, Dae-Kyoung;Cho, Mann-Ho
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.133-138
    • /
    • 2017
  • We investigated the interface defect engineering and reaction mechanism of reduced transition layer and nitride layer in the active plasma process on 4H-SiC by the plasma reaction with the rapid processing time at the room temperature. Through the combination of experiment and theoretical studies, we clearly observed that advanced active plasma process on 4H-SiC of oxidation and nitridation have improved electrical properties by the stable bond structure and decrease of the interfacial defects. In the plasma oxidation system, we showed that plasma oxide on SiC has enhanced electrical characteristics than the thermally oxidation and suppressed generation of the interface trap density. The decrease of the defect states in transition layer and stress induced leakage current (SILC) clearly showed that plasma process enhances quality of $SiO_2$ by the reduction of transition layer due to the controlled interstitial C atoms. And in another processes, the Plasma Nitridation (PN) system, we investigated the modification in bond structure in the nitride SiC surface by the rapid PN process. We observed that converted N reacted through spontaneous incorporation the SiC sub-surface, resulting in N atoms converted to C-site by the low bond energy. In particular, electrical properties exhibited that the generated trap states was suppressed with the nitrided layer. The results of active plasma oxidation and nitridation system suggest plasma processes on SiC of rapid and low temperature process, compare with the traditional gas annealing process with high temperature and long process time.

Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2×n Surface

  • Oh, Seung-Chul;Kim, Ki-Wan;Mamun, Abdulla H.;Lee, Ha-Jin;Hahn, Jae-Rayng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.162-167
    • /
    • 2010
  • We investigated the adsorption and desorption characteristics of benzene molecules on $Si(001)-2{\times}n$ surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a $Si(001)-2{\times}n$ surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twisted-bridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (I) -Fabrication of SiOx(≤2) Plates Using ion Implantation and Their Structural, Compositional Analysis- (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (I) -이온 주입법을 이용한 SiOx(≤2) 플레이트 제작과 구조 화학적 분석-)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.397-404
    • /
    • 2006
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine chemical quenching phenomenon which is caused by radical adsorption and recombination processes on the surface, thermally grown silicon oxide plates with well-defined defect density were prepared. ion implantation technique was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). It has been found that as the ion energy is increased, the number of structural defect is also increased and non-stoichiometric condition of $SiO_x({\le}2)$ is enhanced.

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

Analysis of Sintering Behaviors in Er-doped $UO_2$

  • Kim, Han-Soo;Kim, Si-Hyung;Na, Sang-Ho;Lee, Young-Woo;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.231-237
    • /
    • 1996
  • Defect equilibrium equations were modelled, and the relations of P $o_2$, venus x were derived using the mass action law. The dominant defect species active in a specified region were determined by fitting the curve of experimental data to the calculated curve of log P $o_2$, versus log x for each theoretical model. The calculated curve for (2:1:2) and (Er')$^{x}$ in the hyperstoichiometric $U_{1-y}$E $r_{y}$ $O_{2+x}$ and that for (2Er'quot;)$^{x}$ $_{dec}$ in the hypostoichiometric $U_{1-y}$E $r_{y}$ $O_{2-x}$ are in good agreement with the present experimental results. The sintering behavior of Er-doped U $O_2$ is observed with erbium content in oxidizing and reducing atmospheres. For sintering in oxidizing atmosphere, sintered density decreases as increasing y in $U_{1-y}$E $r_{y}$ $O_{2+x}$. However, in hydrogen atmosphere, sintered density decreases as increasing y at lower erbium content but the density increases again above y=0.10. In oxidizing sintering conditions, the formation of (Er'U')$^{x}$ clusters hinders the diffusion of cations, and hence the sinterability of Er-doped U $O_2$ decreases. In reducing atmosphere of Er-doped U $O_2$ for higher Er concent, the oxygen vacancies make (Er')$^{x}$ cluster decompose by charge compensation and the concentration of mobile cations increases, thereby improving the sinterability.ntration of mobile cations increases, thereby improving the sinterability.ability.

  • PDF

The TDDB Characteristics of Thin $SiO_2$ with Stress Voltage Polarity (스트레스전압 극성에 따른 얇은 산화막의 TDDB 특성)

  • Kim, Cheon-Soo;Yi, Kyoung-Soo;Nam, Kee-Soo;Lee, Jin-Hyo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.5
    • /
    • pp.52-59
    • /
    • 1989
  • The reliability of the thin thermal oxide was investigated by using constant current stress method. Polysilicon gate MOS capacitors with oxide thickness range of 20-25nm were used in this experiment. Automatic measurement and statistical data analysis which were essential in reliability evaluation of VLSI process preformed by HP 9000 computer. Based on TDDB results, defect density, breakdown charge (Qbd) and lifetime of oxide film were evaluated. According to the polarity of the stress, some different characteristics were shown. Defect density was 62/$cm^2$ at negative gate injection. The value of Qbd was about 30C/$cm^2$ at positive gate injection, and about 21C/$cm^2$ at negative. The current density acceleration factor was 1.43$cm^2$/A for negative gate injection, and 1.25$cm^2$/A for positive gate injection.

  • PDF