Microstructure and Electrical Properties of W-doped $\textrm{TiO}_2$

W를 첨가한 $\textrm{TiO}_2$의 미세구조 및 전기적 성질

  • Baek, Seung-Bong (Dept.of Ceramics Engineering, Changwon National University) ;
  • Lee, Sun-Il (Dept.of Ceramics Engineering, Changwon National University) ;
  • Kim, Myeong-Ho (Dept.of Ceramics Engineering, Changwon National University)
  • 백승봉 (창원대학교 세라믹공학과) ;
  • 이순일 (창원대학교 세라믹공학과) ;
  • 김명호 (창원대학교 세라믹공학과)
  • Published : 1999.01.01

Abstract

The electrical conductivity of TiO$_2$ doped with 0.05~1.5mol% WO$_3$ was measured in the oxygen partial pressure range of 10\ulcorner~10\ulcorner atm and temperature range of 1100~130$0^{\circ}C$ to investigate the defect types and the electrical properties. The grain size and density were increased as the liquid phase was formed by the doped WO$_3$. The secondary phase and WO$_3$peaks at the sample doped up to 4.0 mol% were not detected from the XRD results. The data(log$\sigma$/logPo$_2$) over 110$0^{\circ}C$ were divided into the four regions. From these experimental results, we proposed the following defect regions. 1) Magneli phase(extended defect), 2) Reduced rutile region which is similar to the behavior of undoped rutile, 3) Nearly stoichiometric Ti\ulcornerW\ulcornerO$_2$region in which extra charge of W\ulcorner cation is expected to be compensated by an electron, 4) Overstoichiometric Ti\ulcornerW\ulcornerO\ulcorner region which is a metal deficiency not to be observed in pure TiO$_2$. The electrical conductivity of w-doped TiO$_2$ was influenced by the measuring temperature, oxygen partial pressure, and the dopig content.

Keywords

References

  1. J. Phys. Chem. Solids v.23 Thermogravimetric studies of the defect structure of rutile (TiO₂) P.Kofstad
  2. 대한화학회지 v.20 no.5 산화티탄의 비화학양론에 관한 연구 여철현;김대욱;최재시
  3. Acta Chem. Scand v.18 no.5 The defect structure of rutile K.S.Forland
  4. J. Phys. Solids v.42 Thermogravimetric and electrical study of nonstoichiometric titanium dioxide $TiO_{2-x}$ between 800 and 1100℃ J.F.Marucco;J.Gautron;P.Lemasson
  5. Mat. Res. Bull. v.16 Reduction and doping of semiconducting rutile (TiO₂) J.Gautron;J.F.Marucco;P.Lemasson
  6. J. Phys. Chem. Solids v.39 Diffusion of titanium in slightly reduced ruitle J.R.Akse;H.B.Whitehurst
  7. J. Phys. Chem. Solids v.46 no.12 Diffusion and point defects in $TiO_{2-x}$ K.Hoshino;N.L.Peterson;C.L.Wiley
  8. 한국요업학회지 v.28 no.2 Rutile 단결정에서 산소의 확산과 점결함 김명호
  9. Physical Review B v.8 no.8 Temperature dependence of the EPR spectra of Niobium-doped TiO₂ P.H.Zimmermann
  10. J. Kor. Phys. Soc. v.23 no.1 ESR study of $Cr^{3+}$ and $Fe^{3+}$ in rutile (TiO₂) S.S.Kim;S.S.Jun;M.J.Park
  11. Physical Review v.130 no.5 Dependence of the electrical conductivity and thermoelectric power of pore and aluminumdoped rutile on equilibrium oxygen pressure and temperature J.Yahia
  12. Solid state Communication v.1 Experimental evidence from conductivity measurements for interstitial titanium in reduced TiO₂ D.S.Tannhauser
  13. J. Phys. Chem. Solids v.27 Electrical conductivity of nonstoichiometric rutile single crystals from 1000 to 1500℃ R.N.Blumenthal;J.Coburn;J.Baukus;W.M.Hirthe
  14. J. Electrochem. Soc., Solid State Sci. v.114 no.2 Studies of the defect structure of nonstoichiometric rutile, $TiO_{2-x}$ R.N.Blumenthal;J.Baukus;W.M.Hirthe
  15. J. Phys. Chem. Solids v.43 no.12 Formation energies of point defects in rutile (TiO₂) H.Sawatari;E.Iguchi;R.J.D.Tilley
  16. J. Mater. Sci. v.23 Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures U.Balachandran;N.G.Eror
  17. J. Phys. Chem. Solids v.58 no.6 Semiconducting properties of undoped TiO₂ J.Nowotny;M.Radecka;M.Rekas
  18. 한국재료학회지 v.6 no.12 비양론성 Rutile에서 결함구조와 전기 적물성 김명호;백운규
  19. The 9th International Meeting on Ferroelectricity v.135 Electrical conductivity and oxygen diffusion in nonstoichiometric $TiO_{2-x}$ M.H.Kim;U.Paik;S.Nahm;J.D.Byun
  20. Phys. Stat. Sol. v.A39 Thermoelectric power in reduced pure and Nb-doped TiO₂rutile at high temperature J.F.Baumard;E.Tani
  21. J. Solid State Chem. v.32 Electrical properties and defect structure of rutile slightly doped with Cr and Ta E.Tani;J.F.Baumard
  22. J. Phys. Chem. Solids v.46 no.6 Thermpdynamic properties of titanium dioxie, niobium dioxide and their solid solutions at high temperature J.F.Marucco;B.Poumellec;J.Gautron;P.Lemasson
  23. J. Phys. Chem. Solids v.46 no.1 Electron transport in $Nb_xTi_{1-x}O_2$ with 0.04
  24. Z. Metallkde v.70 no.10 The defect structure nonstoichiometry and electrical conductivity of MO₂oxides doped by pentavalent oxides G.Levin;C.J.Rosa
  25. Introduction to metallurgical themodynamics(2nd edition) D.R.Gaskell
  26. 요업재료의 과학과 기술 v.9 no.2 산소 이온전도체 안정화 지르코니아의 응용 이주신
  27. Ceramic processing and sintering M.N.Rahaman
  28. Phase diagrams for ceramists v.3 Ernest M. Levin;Carl R. Robbins;Howard F. McMurdie
  29. J. Am. Ceram. Soc. v.74 no.2 Densification and Shrinkage diring liquid-phase sintering S.J.Kang;K.H.Kim;D.N.Yoon
  30. J. Physique Lett. v.44 Structure of cation interstitial defects in nonstoichiometric rutile L.A.Bursil;M.G.Blanchin
  31. J. Kor. Phys. Soc. v.32 Electrical conductivity and oxygen diffusion in nonstoichiometric $TiO_{2-x}$ M.H.Kim;S.B.Baek;U.Paik;S.Nahm;J.D.Byun
  32. 한국재료학회지 v.8 no.10 반도성 rutile의 전기적성질 및 점결함형태 백승봉;김명호
  33. J. Chem. Phys. v.67 no.3 Electrical conductivity and charge compensation in Nb doped TiO₂rutile J.F.Baumard;E.Tani