DOI QR코드

DOI QR Code

Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2×n Surface

  • Oh, Seung-Chul (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Kim, Ki-Wan (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Mamun, Abdulla H. (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University) ;
  • Lee, Ha-Jin (Jeonju Center, Korea Basic Science Institute) ;
  • Hahn, Jae-Rayng (Department of Chemistry and Institute of Photonics and Information Technology, Chonbuk National University)
  • Published : 2010.01.20

Abstract

We investigated the adsorption and desorption characteristics of benzene molecules on $Si(001)-2{\times}n$ surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a $Si(001)-2{\times}n$ surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twisted-bridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface.

Keywords

References

  1. Waltenburg, H. N.; Yates, J. T., Jr. Chem. Rev. 1995, 95, 1589. https://doi.org/10.1021/cr00037a600
  2. Wolkow, R. A. Annu. Rev. Phys. Chem. 1999, 50, 413. https://doi.org/10.1146/annurev.physchem.50.1.413
  3. Hamers, R. J.; Coulter, S. K.; Ellison, M. D.; Hovis, J. S.; Padowitz, D. F.; Schwartz, M. P.; Greenlief, C. M; Russell, J. N., Jr. Acc. Chem. Res. 2000, 33, 617. https://doi.org/10.1021/ar970281o
  4. Hata, K.; Ishida, M.; Miyake, K.; Shigekawa, H. Appl. Phys. Lett. 1998, 73, 40. https://doi.org/10.1063/1.121716
  5. Tochihara, H.; Amakusa, T.; Iwatsuki, M. Phys. Rev. B 1994, 50, 12262. https://doi.org/10.1103/PhysRevB.50.12262
  6. Koo, J.-Y.; Yi, J.-Y.; Hwang, C.; Kim, D.-H.; Lee, S.; Shin, D.-H. Phys. Rev. B 1995, 52, 17269. https://doi.org/10.1103/PhysRevB.52.17269
  7. Ukraintsev, V. A.; Yates, J. T., Jr. Surf. Sci. 1996, 346, 31. https://doi.org/10.1016/0039-6028(95)00779-2
  8. Kato, K.; Ide, T.; Miura, S.; Tamura, A.; Ichinokawa, T. Surf. Sci. 1988, 194, L87. https://doi.org/10.1016/0039-6028(94)91238-6
  9. Horsfield, A.; Akhmatskaya, E.; Nobes, R.; Andzelm, J.; Fitzgerald, G.; Govind, N. Phys. Rev. B 2002, 66, 085309. https://doi.org/10.1103/PhysRevB.66.085309
  10. Kolditz, B.; Roos, K. R. J. Vac. Sci. Technol. A 2007, 25, 721. https://doi.org/10.1116/1.2740295
  11. Yang, H. Q.; Zhu, C. X.; Gao, J. N.; Xue, Z. Q.; Pang, S. J. Surf. Sci. 1998, 412-413, 236. https://doi.org/10.1016/S0039-6028(98)00431-2
  12. Weber, E. R. Appl. Phys. A: Solids Surf. 1983, 30, 1. https://doi.org/10.1007/BF00617708
  13. Ukraintsev, V. A.; Dohnalek, Z.; Yates, J. T., Jr. Surf. Sci. 1997, 388, 132. https://doi.org/10.1016/S0039-6028(97)00384-1
  14. Swartzentruber, B. S.; Mo, Y.-W.; Webb, M. B.; Lagally, M. G. J. Vac. Sci. Technol. A 1989, 7, 2901. https://doi.org/10.1116/1.576167
  15. Zandvliet, H. J. W. Surf. Sci. 1997, 377-379, 1. https://doi.org/10.1016/S0039-6028(96)01316-7
  16. Li, Q.; Leung, K. T. Surf. Sci. 2001, 479, 69. https://doi.org/10.1016/S0039-6028(01)00958-X
  17. Kruse, P.; Wolkow, R. A. Appl. Phys. Lett. 2002, 81, 4422. https://doi.org/10.1063/1.1526459
  18. Hofer, W. A.; Fisher, A. J.; Lopinski, G. P.; Wolkow, R. A. Surf. Sci. 2001, 482-485, 1181. https://doi.org/10.1016/S0039-6028(01)00941-4
  19. Jung, Y.; Gordon, M. S. J. Am. Chem. Soc. 2005, 127, 3131. https://doi.org/10.1021/ja0402093
  20. Nisbet, G.; Lamont, C. L. A.; Polcik, M.; Terborg, R.; Sayago, D. I.; Kittel, M.; Hoeft, J. T.; Toomes, R. L.; Woodruff, D. P. J. Phys.: Condens. Matter 2008, 20, 304206. https://doi.org/10.1088/0953-8984/20/30/304206
  21. Jeong, H. D.; Ryu, S.; Lee, Y. S.; Kim, S. Surf. Sci. 1995, 344, L1226. https://doi.org/10.1016/0039-6028(95)00931-0
  22. Taguchi, Y.; Fujisawa, M.; Takaoka, T.; Okada, T; Nishijima, M. J. Chem. Phys. 1991, 95, 6870. https://doi.org/10.1063/1.461498
  23. Gokhale, S.; Trischberger, P.; Menzel, D.; Widdra, W.; Droge, H.; Steinruck, H.-P.; Birkenheuer, U.; Gutdeutsch, U.; Rosch, N. J. Chem. Phys. 1998, 108, 5554. https://doi.org/10.1063/1.475945
  24. Kong, M. J.; Teplyakov, A. V.; Lyubovitsky, J. G.; Bent, S. F. Surf. Sci. 1998, 411, 286. https://doi.org/10.1016/S0039-6028(98)00336-7
  25. Kim, Y. K.; Lee, M. H.; Yeom, H. W. Phys. Rev. B 2005, 71, 115311. https://doi.org/10.1103/PhysRevB.71.115311
  26. Borovsky, B.; Krueger, M.; Ganz, E. Phys. Rev. B 1998, 57, R4269. https://doi.org/10.1103/PhysRevB.57.R4269
  27. Lopinski, G. P.; Fortier, T. M.; Moffatt, D. J.; Wolkow, R. A. J. Vac. Sci. Technol. A 1998, 16, 1037. https://doi.org/10.1116/1.581228
  28. Lee, J.-Y.; Cho, J.-H. Phys. Rev. B 2005, 72, 235317. https://doi.org/10.1103/PhysRevB.72.235317
  29. Silvestrelli, P. L.; Ancilotto, F.; Toigo, F. Phys. Rev. B 2000, 62, 1956.
  30. Nagao, M.; Yamashita, Y.; Machida, S.; Hamaguchi, K.; Yasui, F.; Mukai, K.; Yoshinobu, J. Surf. Sci. 2002, 513, 413. https://doi.org/10.1016/S0039-6028(02)01878-2
  31. Witkowski, N.; Pluchery, O.; Borensztein, Y. Phys. Rev. B 2005, 72, 075354. https://doi.org/10.1103/PhysRevB.72.075354
  32. Birkenheuer, U.; Gutdeutsch, U.; Rosch, N.; Fink, A.; Gokhale, S.; Menzel, D.; Trischberger, P.; Widdra, W. J. Chem. Phys. 1998, 108, 9868. https://doi.org/10.1063/1.476425
  33. Hofer, W. A.; Fisher, A. J.; Lopinski, G. P.; Wolkow, R. A. Phys. Rev. B 2001, 63, 085314. https://doi.org/10.1103/PhysRevB.63.085314
  34. Lopinski, G. P.; Moffatt, D. J.; Wolkow, R. A. Chem. Phys. Lett. 1998, 282, 305. https://doi.org/10.1016/S0009-2614(97)01317-1
  35. Alavi, S.; Rousseau, R.; Patitsas, S. N.; Lopinski, G. P.; Wolkow, R. A.; Seideman, T. Phys. Rev. Lett. 2000, 85, 5372. https://doi.org/10.1103/PhysRevLett.85.5372
  36. Self, K. W.; Pelzel, R. I.; Owen, J. H. G.; Yan, C.; Widdra, W.; Weinberg, W. H. J. Vac. Sci. Technol. A 1998, 16, 1031. https://doi.org/10.1116/1.581227
  37. Wolkow, R. A.; Lopinski, G. P.; Moffatt, D. J. Surf. Sci. 1998, 416, L1107. https://doi.org/10.1016/S0039-6028(98)00629-3
  38. Lu, X.; Wang, X.; Yuan, Q.; Zhang, Q. J. Am. Chem. Soc. 2003, 125, 7923. https://doi.org/10.1021/ja035329+
  39. Li, Z.-H.; Li, Y.-C.; Wang, W.-N.; Cao, Y.; Fan, K.-N. J. Phys. Chem. B 2004, 108, 14049. https://doi.org/10.1021/jp047722n
  40. Hahn, J. R.; Jeong, H.; Jeong, S. J. Chem. Phys. 2005, 123, 244702. https://doi.org/10.1063/1.2136871
  41. Jeong, H.; Jeong, S.; Jang, S. H.; Seo, J. M.; Hahn, J. R. J. Phys. Chem. B 2006, 110, 15912. https://doi.org/10.1021/jp062075g
  42. Hahn, J. R.; Jeong, H.; Jeong, S.; Jang, S. H. Jpn. J. Appl. Phys. 2006, 45, 2175. https://doi.org/10.1143/JJAP.45.2175
  43. B. C.; Rezaei, M. A.; Ho, W. Rev. Sci. Instrum. 1999, 70, 137. https://doi.org/10.1063/1.1149555
  44. Lauhon, L. J.; Ho, W. Rev. Sci. Instrum. 2001, 72, 216. https://doi.org/10.1063/1.1327311
  45. Hahn, J. R. Bull. Korean Chem. Soc. 2005, 26, 1071. https://doi.org/10.5012/bkcs.2005.26.7.1071
  46. Jang, S. H.; Jeong, S.; Hahn, J. R. J. Phys. Chem. C 2007, 111, 340. https://doi.org/10.1021/jp064078z
  47. Haq, S.; King, D. A. J. Phys. Chem. 1996, 100, 16957. https://doi.org/10.1021/jp960814v
  48. Di-Nardo, N. J.; Avouris, Ph.; Demuth, J. E. J. Chem. Phys. 1984, 81, 2169. https://doi.org/10.1063/1.447842
  49. Dougherty, D. B.; Lee, J.; Yates, J. T., Jr. J. Phys. Chem. B 2006, 110, 11991. https://doi.org/10.1021/jp060733r

Cited by

  1. Mechanism of Benzene Monolayer Formation on Si(100)-2×1 Studied by Surface Differential Reflectance Spectroscopy vol.118, pp.20, 2014, https://doi.org/10.1021/jp412327p
  2. Organic Functionalization at the Si(001) Dimer Vacancy Defect-Structure, Bonding, and Reactivity vol.125, pp.10, 2010, https://doi.org/10.1021/acs.jpcc.1c00262