DOI QR코드

DOI QR Code

Light Induced Degradation in Crystalline Si Solar Cells

결정질 실리콘 태양전지의 광열화 현상

  • Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Young-Do (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Soo-Min (Department of Materials Science and Engineering, Korea University) ;
  • Park, Sung-Eun (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
  • Received : 2012.03.26
  • Accepted : 2012.03.29
  • Published : 2012.03.25

Abstract

The main issue of boron doped p-type czochralski-grown silicon solar cells is the degradation when they are exposed to light or minority carriers injection. This is due to the meta-stable defect such as boron-oxygen in the Cz-Si material. Although a clear explanation is still researching, recent investigations have revealed that the Cz-Si defect is related with the boron and the oxygen concentration. They also revealed how these defects act a recombination centers in solar cells using density function theory (DFT) calculation. This paper reviews the physical understanding and gives an overview of the degradation models. Therefore, various methods for avoiding the light-induced degradation in Cz-Si solar cells are compared in this paper.

Keywords

References

  1. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, 1998, "19.8% Efficient "Honeycomb" Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells", Appl. Phys. Lett. 73, pp. 1991-1993. https://doi.org/10.1063/1.122345
  2. J. Knobloch, S. Glunz, V. Henninger, W. Warta, W. Wettling, F. Schomann, W. Schmidt, A. Endros, K. Miizer, 1995, Proc. 13th European PVSEC, p. 9.
  3. S. Sterk, K. Miizer, and S. Glunz, 1997, Proc. 14th European PVSEC, p. 85.
  4. A. Herguth, G. Schubert, M. Kaes, and G. Hahn, 2006, "Avoiding boron-oxygen related degradation in highly boron doped Cz silicon", 21st EU-PVSEC, pp. 530-537.
  5. Karsten Bothea, Jan Schmidt, 2006, "Electronically activated boron-oxygen related recombination centers in crystalline silicon", J. Appl. phys., 99, 013701. https://doi.org/10.1063/1.2140584
  6. Jan Schmidt, 2004, "Light induced degradation in Cz-Si solar cells", Solid State Phenomena, 95-96, pp. 187-196. https://doi.org/10.4028/www.scientific.net/SSP.95-96.187
  7. H. Fischer and W. Pschunder, 1973, "Investigation of photon and thermal induced changes in silicon solar cells", in 10th IEEE PVSC, pp. 404-411.
  8. Karsten Bothea, Jan Schmidt, 2005, "Fast-forming boron-oxygen-related recombination center in crystalline silicon", J. Appl. phys., 87, 262108.
  9. Jan Schmidt, Karsten Bothe, and Rudolf Hezel, 2002, "Oxygen-related minority-carrier trapping centers in p-type Czochralski silicon", Appl. phys. Lett., 80, 23.
  10. S. W. Glunz, S. Rein, W. Warta, J. Knobloch, and W. Wettling, 1998, Proc. 2nd WCPSEC, p. 1343.
  11. J. C. Mikkelsen, 1986, MRS Res. Soc. Symp. Proc. 59, p. 19.
  12. Y. J. Lee, J. von Boehm, M. Pesola, and R. M. Nieminen, 2001, "Aggregation Kinetics of Thermal Double Donors in Silicon", Phys. Rev. Lett. 86, pp. 3060-3063. https://doi.org/10.1103/PhysRevLett.86.3060
  13. Jan Schmidt and Karsten Bothe, 2004, "Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon", Physucal review B 69, 024107. https://doi.org/10.1103/PhysRevB.69.024107
  14. L. C. Kimerling, J. L. Benton, 1983, Physica B & C 116, 297. https://doi.org/10.1016/0378-4363(83)90263-2
  15. Mao-Hua Du, Howard M. Branz, Richard S. Crandall, and S. B. Zhang, 2005, "A New Mechanism for Non-Radiative Recombination at Light-Induced Boron-Oxygen Complexes in Silicon", DOE solar energy Technologies program review meeting, Nov. 7-10.
  16. J. Adey, R. Jones, D. W. Palmer, P. R. Briddon and S. Oberg, 2004, "Degradation of Boron-Doped Czochralski-Grown Silicon Solar Cells", Phys. Rev. Lett. 93, 055504. https://doi.org/10.1103/PhysRevLett.93.055504
  17. L. C. Kimerling, J. L. Benton, 1983, "Electonically controlled reactions of interstitial iron in silicon", Physica 116B pp. 297-300.
  18. Deleo, Gary G., Watkins, George D., Fowler, W. Beall, 1981, "Theory of interstitial transition-metal impurities in silicon", Physical Review B, 23, 4, pp. 1851-1858. https://doi.org/10.1103/PhysRevB.23.1851
  19. K. Wunstel, P. Wagner, 1982, "Interstitial Iron and Iron-Acceptor Pairs in Silicon", Appl. Phys. A 2, pp. 207-212 .
  20. A. A. Istratov, H. hieslmair, E. R. Weber, 2005, "Iron and its complexes in silicon", Appl. Phys. A 69, pp. 13-44.
  21. Jens E. Birkholz, Karsten Bothe, Daniel Macdonald, Jan Schmidt, 2005, "Electronic properties of iron-boron pairs in crystalline silicon by temperature- and injection-level-dependent lifetime measurements", J. Appl. phys., 97, 103708. https://doi.org/10.1063/1.1897489
  22. S. Rein, S. W. Glunz, 2005, "Electronic properties of interstitial iron and iron-boron pairs determined by means of advanced lifetime spectroscopy", J. Appl. phys., 98, 113711. https://doi.org/10.1063/1.2106017
  23. Marshall Wilson, Piotra Edelman, Alexandre Savtchouk, John D'Amico, Andrew Findlay, Jacek Lagoeski, 2010, "Accelerated Light-Induced Degradation (ALID) for Monitoring of Defects in PV Silicon Wafers and Solar Cells", Journal of Electronic Materials 39, pp. 642-647. https://doi.org/10.1007/s11664-010-1183-7
  24. Vichai Meemongkolkiat, 2008, "Development of high efficiency mono c-Si solar cells through improved optical and electrical confinement", Ph.D thesis, Georgia Institute of Technology.
  25. W. Zulehner, 1994, "The growth of highly pure silicon crystals", Matrologia, 31, pp. 255-261. https://doi.org/10.1088/0026-1394/31/3/012
  26. Jan Schmidt, Andrés Cuevas, 1999, "Electronic properties of light-induced recombination centers in boron-doped", J. Appl. phys., 86, 3175. https://doi.org/10.1063/1.371186
  27. J. Schmidt, A.G. Aberle, and R. Hezel, 1997, Proc. 26th IEEE Photovolt. Spec. Conf. p. 13.
  28. S. Glunz, S. Rein, J. Knobloch, W. Wettling, and T. Abe, 1999, "Comparison of boron- and gallium-doped p-type Czochralski silicon for photovoltaic application", Prog. Photovolt. 7, 6, pp. 463-469.
  29. S. Glunz, S. Rein, J. Lee, and W. Warta, 2001, "Minority carrier lifetime degradation in boron-doped Czochralski silicon", J. Appl. Phys. 90, 2397. https://doi.org/10.1063/1.1389076
  30. A. Metz, T. Abe, and R. Hezel, 2000, Proc. 16th European Photovolt. Solar Energy Conf., p. 1189.
  31. J. Zhao, A. Wang, and M. Green, 2000, Proc. 16th European Photovolt. Solar Energy Conf., p. 1100.
  32. J. Zhao, A. Wang, and M. Green, 2000, "Performance Degradation in CZ(B) Cells and Improved Stability High Efficiency PERT and PERL Silicon Cells on a Variety of SEH MCZ(B), FZ(B) and CZ(Ga) Substrates", Prog. Photovolt. 8, pp. 549-558.
  33. T. Saitoh, H. Hashigami, X. Wang, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, A. Ebong, B. M. Damiani, A. Rohatgi, I. Yamasaki, T. Nunoi, H. Sawai, H. Ohtuka, T. Warabisako, J. Zhao, M. Green, J. Schmidt, A. Cuevas, A. Metz, and R. Hezel, 2000, Proc. 16th EU PVSEC, p. 1206.
  34. A. Metz and R. Hezel, 1999, presented at the 1st Workshop on Light Degradation of Carrier Lifetimes in Cz-Si Solar Cells, Sapporo, Japan.
  35. H. Nagel, A. Merkle, A. Metz, and R. Hezel, 2000, Proc. 16th EU PVSEC, p. 1197.
  36. J. Lee, S. Peters, S. Rein, and, S. Glunz, 2001, "Improvement of Charge Minority Carrier Lifetime in P (Boron)-Type Czochralski Silicon by Rapid Thermal Annealing", Prog. Photovolt. 9, pp. 417-424.