• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.029 seconds

Deep Learning-based Rail Surface Damage Evaluation (딥러닝 기반의 레일표면손상 평가)

  • Jung-Youl Choi;Jae-Min Han;Jung-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.505-510
    • /
    • 2024
  • Since rolling contact fatigue cracks can always occur on the rail surface, which is the contact surface between wheels and rails, railway rails require thorough inspection and diagnosis to thoroughly inspect the condition of the cracks and prevent breakage. Recent detailed guidelines on the performance evaluation of track facilities present the requirements for methods and procedures for track performance evaluation. However, diagnosing and grading rail surface damage mainly relies on external inspection (visual inspection), which inevitably relies on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we conducted a deep learning model study for rail surface defect detection using Fast R-CNN. After building a dataset of rail surface defect images, the model was tested. The performance evaluation results of the deep learning model showed that mAP was 94.9%. Because Fast R-CNN has a high crack detection effect, it is believed that using this model can efficiently identify rail surface defects.

Deep Learning-based Happiness Index Model Considering Social Variables and Individual Emotional Index (사회적 변수와 개개인의 감정지수를 함께 고려한 딥러닝 기반 행복 지수 모델 설계)

  • Sumin Oh;Minseo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.489-493
    • /
    • 2024
  • Happiness index is a measurement system for understanding collective happiness. As values change, studies have been proposed to add the value of behavior to the happiness index. However, there is a lack of studies analyze the relationship using individual emotions. Using a deep learning model, we predicted happiness index using social variables and individual emotional index. First, we collected social and emotional variables from January 2005 to December 2020. Second, we preprocessed the data and identified significant variables. Finally, we trained deep learning-based regression model. Our proposed model was evaluated using 5-fold cross validation. The proposed model showed 90.86% accuracy on test sets. Our model will be expected to analyze the significant factors of country-specific happiness index.

Anthropomorphic Animal Face Masking using Deep Convolutional Neural Network based Animal Face Classification

  • Khan, Rafiul Hasan;Lee, Youngsuk;Lee, Suk-Hwan;Kwon, Oh-Jun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.558-572
    • /
    • 2019
  • Anthropomorphism is the attribution of human traits, emotions, or intentions to non-human entities. Anthropomorphic animal face masking is the process by which human characteristics are plotted on the animal kind. In this research, we are proposing a compact system which finds the resemblance between a human face and animal face using Deep Convolutional Neural Network (DCNN) and later applies morphism between them. The whole process is done by firstly finding which animal most resembles the particular human face through a DCNN based animal face classification. And secondly, doing triangulation based morphing between the particular human face and the most resembled animal face. Compared to the conventional manual Control Point Selection system using an animator, we are proposing a Viola-Jones algorithm based Control Point selection process which detects facial features for the human face and takes the Control Points automatically. To initiate our approach, we built our own dataset containing ten thousand animal faces and a fourteen layer DCNN. The simulation results firstly demonstrate that the accuracy of our proposed DCNN architecture outperforms the related methods for the animal face classification. Secondly, the proposed morphing method manages to complete the morphing process with less deformation and without any human assistance.

Deep-Learning-Based Water Shield Automation System by Predicting River Overflow and Vehicle Flooding Possibility (하천 범람 및 차량 침수 가능성 예측을 통한 딥러닝 기반 차수막 자동화 시스템)

  • Seung-Jae Ham;Min-Su Kang;Seong-Woo Jeong;Joonhyuk Yoo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.133-139
    • /
    • 2023
  • This paper proposes a two-stage Water Shield Automation System (WSAS) to predict the possibility of river overflow and vehicle flooding due to sudden rainfall. The WSAS uses a two-stage Deep Neural Network (DNN) model. First, a river overflow prediction module is designed with LSTM to decide whether the river is flooded by predicting the river's water level rise. Second, a vehicle flooding prediction module predicts flooding of underground parking lots by detecting flooded tires with YOLOv5 from CCTV images. Finally, the WSAS automatically installs the water barrier whenever the river overflow and vehicle flooding events happen in the underground parking lots. The only constraint to implementing is that collecting training data for flooded vehicle tires is challenging. This paper exploits the Image C&S data augmentation technique to synthesize flooded tire images. Experimental results validate the superiority of WSAS by showing that the river overflow prediction module can reduce RMSE by three times compared with the previous method, and the vehicle flooding detection module can increase mAP by 20% compared with the naive detection method, respectively.

Depth tracking of occluded ships based on SIFT feature matching

  • Yadong Liu;Yuesheng Liu;Ziyang Zhong;Yang Chen;Jinfeng Xia;Yunjie Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1066-1079
    • /
    • 2023
  • Multi-target tracking based on the detector is a very hot and important research topic in target tracking. It mainly includes two closely related processes, namely target detection and target tracking. Where target detection is responsible for detecting the exact position of the target, while target tracking monitors the temporal and spatial changes of the target. With the improvement of the detector, the tracking performance has reached a new level. The problem that always exists in the research of target tracking is the problem that occurs again after the target is occluded during tracking. Based on this question, this paper proposes a DeepSORT model based on SIFT features to improve ship tracking. Unlike previous feature extraction networks, SIFT algorithm does not require the characteristics of pre-training learning objectives and can be used in ship tracking quickly. At the same time, we improve and test the matching method of our model to find a balance between tracking accuracy and tracking speed. Experiments show that the model can get more ideal results.

Speech and Textual Data Fusion for Emotion Detection: A Multimodal Deep Learning Approach (감정 인지를 위한 음성 및 텍스트 데이터 퓨전: 다중 모달 딥 러닝 접근법)

  • Edward Dwijayanto Cahyadi;Mi-Hwa Song
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.526-527
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing multi-modal speech emotion recognition system, we can get numerous benefits. This paper explain about fusing BERT as the text recognizer and CNN as the speech recognizer to built a multi-modal SER system.

Performance Evaluation of Reinforcement Learning Algorithm for Control of Smart TMD (스마트 TMD 제어를 위한 강화학습 알고리즘 성능 검토)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.2
    • /
    • pp.41-48
    • /
    • 2021
  • A smart tuned mass damper (TMD) is widely studied for seismic response reduction of various structures. Control algorithm is the most important factor for control performance of a smart TMD. This study used a Deep Deterministic Policy Gradient (DDPG) among reinforcement learning techniques to develop a control algorithm for a smart TMD. A magnetorheological (MR) damper was used to make the smart TMD. A single mass model with the smart TMD was employed to make a reinforcement learning environment. Time history analysis simulations of the example structure subject to artificial seismic load were performed in the reinforcement learning process. Critic of policy network and actor of value network for DDPG agent were constructed. The action of DDPG agent was selected as the command voltage sent to the MR damper. Reward for the DDPG action was calculated by using displacement and velocity responses of the main mass. Groundhook control algorithm was used as a comparative control algorithm. After 10,000 episode training of the DDPG agent model with proper hyper-parameters, the semi-active control algorithm for control of seismic responses of the example structure with the smart TMD was developed. The simulation results presented that the developed DDPG model can provide effective control algorithms for smart TMD for reduction of seismic responses.

Transfer Learning Models for Enhanced Prediction of Cracked Tires

  • Candra Zonyfar;Taek Lee;Jung-Been Lee;Jeong-Dong Kim
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.13-20
    • /
    • 2023
  • Regularly inspecting vehicle tires' condition is imperative for driving safety and comfort. Poorly maintained tires can pose fatal risks, leading to accidents. Unfortunately, manual tire visual inspections are often considered no less laborious than employing an automatic tire inspection system. Nevertheless, an automated tire inspection method can significantly enhance driver compliance and awareness, encouraging routine checks. Therefore, there is an urgency for automated tire inspection solutions. Here, we focus on developing a deep learning (DL) model to predict cracked tires. The main idea of this study is to demonstrate the comparative analysis of DenseNet121, VGG-19 and EfficientNet Convolution Neural Network-based (CNN) Transfer Learning (TL) and suggest which model is more recommended for cracked tire classification tasks. To measure the model's effectiveness, we experimented using a publicly accessible dataset of 1028 images categorized into two classes. Our experimental results obtain good performance in terms of accuracy, with 0.9515. This shows that the model is reliable even though it works on a dataset of tire images which are characterized by homogeneous color intensity.

  • PDF

Simulation combined transfer learning model for missing data recovery of nonstationary wind speed

  • Qiushuang Lin;Xuming Bao;Ying Lei;Chunxiang Li
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.383-397
    • /
    • 2023
  • In the Structural Health Monitoring (SHM) system of civil engineering, data missing inevitably occurs during the data acquisition and transmission process, which brings great difficulties to data analysis and poses challenges to structural health monitoring. In this paper, Convolution Neural Network (CNN) is used to recover the nonstationary wind speed data missing randomly at sampling points. Given the technical constraints and financial implications, field monitoring data samples are often insufficient to train a deep learning model for the task at hand. Thus, simulation combined transfer learning strategy is proposed to address issues of overfitting and instability of the deep learning model caused by the paucity of training samples. According to a portion of target data samples, a substantial quantity of simulated data consistent with the characteristics of target data can be obtained by nonstationary wind-field simulation and are subsequently deployed for training an auxiliary CNN model. Afterwards, parameters of the pretrained auxiliary model are transferred to the target model as initial parameters, greatly enhancing training efficiency for the target task. Simulation synergy strategy effectively promotes the accuracy and stability of the target model to a great extent. Finally, the structural dynamic response analysis verifies the efficiency of the simulation synergy strategy.

A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation (순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구)

  • Yoon, Ji Hyung;Chung, Jaewon;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.21-33
    • /
    • 2022
  • Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.