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Abstract 
Regularly inspecting vehicle tires' condition is imperative for driving safety and comfort. Poorly 

maintained tires can pose fatal risks, leading to accidents. Unfortunately, manual tire visual inspections 

are often considered no less laborious than employing an automatic tire inspection system. Nevertheless, 

an automated tire inspection method can significantly enhance driver compliance and awareness, 

encouraging routine checks. Therefore, there is an urgency for automated tire inspection solutions. Here, 

we focus on developing a deep learning (DL) model to predict cracked tires. The main idea of this study 

is to demonstrate the comparative analysis of DenseNet121, VGG-19 and EfficientNet Convolution 

Neural Network-based (CNN) Transfer Learning (TL) and suggest which model is more recommended 

for cracked tire classification tasks. To measure the model's effectiveness, we experimented using a 

publicly accessible dataset of 1028 images categorized into two classes. Our experimental results obtain 

good performance in terms of accuracy, with 0.9515. This shows that the model is reliable even though 

it works on a dataset of tire images which are characterized by homogeneous color intensity. 
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Ⅰ. Introduction  
 

Tires, often underestimated, are crucial components of a vehicle that significantly influence overall 

performance and safety. Their role is paramount as they maintain continuous contact with the road 

surface, making it imperative to emphasize the significance of regular tire condition monitoring. To 

assess the general condition of a tire, there are two main aspects to consider: the tire tread and the tire 

sidewall [1]. The tread pattern, which is unique to each type of tire, has a direct influence on the tire's 

ability to handle various road conditions. Whether it's dry asphalt, wet surfaces, slippery roads, sandy 

terrain, or muddy paths, the tread pattern functions as a determinant of a tire's grip and traction. This 

knowledge has enormous value for drivers who need to select the most appropriate tires based on their 

specific driving needs and the general road conditions they encounter. 

Furthermore, the sidewall of a tire carries equal significance as it dictates the tire's structural strength 

and overall integrity. Responsible for maintaining the tire's shape, bearing the vehicle's weight, and 

withstanding external forces like impacts from potholes or road edges, the sidewall plays a vital role. 

Any form of deterioration in the condition of the sidewall can significantly compromise the tire's 

longevity, safety, and overall performance metrics. Thus, understanding the quality of the tire sidewall 

and its implications on tire durability is fundamental knowledge that every driver should possess before 

hitting the road. Neglecting tire maintenance and monitoring can have far-reaching consequences. For 

instance, worn or damaged tire treads can result in reduced traction, longer braking distances, and an 

elevated risk of hydroplaning on wet surfaces. On the other hand, weakened or damaged sidewalls may 

lead to tire blowouts, which not only pose serious safety hazards but can also cause accidents and lead to 

costly repairs. This underscores the critical importance of regularly checking and, if necessary, replacing 

tires to mitigate potential risks. 
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The introduction of automatic tire quality checks has made it more convenient for drivers to conduct 

periodic assessments of their vehicle's tires. Additionally, the simplified inspection system can boost 

driver compliance, encouraging them to carry out regular and disciplined inspections. Therefore, the 

development of automated methods for detecting tire cracks is of paramount importance. Automated tire 

quality checks serve as a valuable tool in the hands of drivers, providing them with a convenient means 

to routinely monitor their tires' condition. Beyond convenience, these automated inspections contribute 

to enhancing driver compliance with regular check-ups. Consequently, the development of automated 

systems for detecting tire cracks emerges as a crucial endeavor in the realm of vehicle safety and 

maintenance. 

Advances in DL are revolutionizing various aspects of the transportation industry, including the safety 

of vehicle drivers and passengers[2][3]. DL techniques can analyze information related to road safety, 

whether in the form of image, audio, nor text data[4]. For instance, an automated visual inspection 

system is used to monitor the health condition of tires. As we mentioned before, tires are closely related 

to driving safety and comfort. The application of automatic detection of tire health is important for the 

safety of drivers, passengers, and vehicles. In addition, it also has an impact on reducing maintenance 

costs. The system will produce images with the help of high-resolution cameras and sensors. Then, using 

a DL algorithm, the images are analyzed looking for signs of wear, cracks, bulges, or other anomalies 

that could indicate potential tire problems. Precise detection results can detect tire condition problems 

early, allowing for timely maintenance or tire replacement before they become a safety hazard. 

 

 

Ⅱ. Related Works 
 

In recent years, DL models have been developed for tire detection and classification tasks. The study 

conducted by Siegel et al., [5] addresses the problem of tire health monitoring by using CNN to detect 

cracks in vehicle tires. Their research was motivated by the increasing need for tire health monitoring, 

prompting them to explore the capabilities of tightly connected CNNs. Their model achieved 78.5% 

accuracy when applied to cropped sample images, surpassing human performance levels of 55%. 

Study Zhu and Ai [6] used a DL approach on a dataset of tire X-ray images. In their work, tire damage 

is categorized into various types, namely, bubbles, impurities, cord ply problems, belt problems, zero 

belt problems, and anti-packet area problems. The design method used uses faster RCNN. Research Sun 

et al., [7] also uses a data set of x-ray tire images to detect impurity defects in tires. They use traditional 

image processing techniques with a multi-step approach. First, a binarization algorithm based on 

columnar grayscale correction is designed. The second stage of segmentation, and the last stage, two 

thresholds are used to judge whether there are impurity defects in the tire image. 

On the other hand, based on tire tread, Park et al., [8] defines three categories of tire wear status: 

safety, warning, and danger. Park et al., [8] research, using ResNet101 which utilizes attention 

mechanism techniques to extract stronger features. As a result, the developed tire flaw detection model 

shows an accuracy of up to 91% using the Mask R-CNN model. The challenge they confronted was the 

intricate overlap between natural and cracked textures in tire images. This overlap posed a significant 

challenge for DL models, as they struggled to distinguish between these textures effectively. 

Consequently, without early image preprocessing, the model’s accuracy in classifying tire categories 

remained low. 

In the study Li et al., [9], it was revealed that in tire manufacturing companies, tire x-rays were used 

to check tire defects at the manual inspection stage. Although these methods achieved much success in 

detecting tire defects, unfortunately they were not sufficient for application-level requirements. Li et al 

[9] propose an end-to-end DL model for automatic tire defect detection called TireNet using X-ray 

images. The model consists of a Siamese network as part of a downstream classifier to capture faulty 

features. As a result, the experiment shows a high recall value compared to other models in the 

experiment. Visual inspection of damaged tires after production is important to prevent fatal accidents 

due to potential explosions. Research Saleh et al., [10] proposes a conventional machine learning (ML) 

approach to automatically detect tire defects. They used Gray Level Co-occurrence Matrix (GLCM) for 

feature extraction, and trained several algorithms, including Support Vector Machines (SVM), Artificial 

Neural Networks (ANN), k-Nearest Neighbors (K-NN), Decision Trees (DT), and Logistic Regression 

(LR). As a result, training with 10-fold cross validation of ANN model outperformed the other models in 

term accuracy, precision, recall, and F1 scores. 
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Recently, tire classification research was proposed by Al-juboori et al., [11] and Lin [12]. Al-juboori 

et al., [11] presents a hybrid system for detecting cracked tires with three main steps: feature extraction, 

selection, and classification. It uses oriented gradient histograms for feature extraction, adaptive 

correlation feature selection to select important features, and deep belief neural network (DBNN) for 

image category prediction. They showed classification accuracy (88.90%) compared to DBNN and CNN 

of 85.59%, 81.6% respectively. On the other hand, Lin [12] introduced an improved ShuffleNet method 

for tire defect detection, where their proposed model outperformed GoogLeNet, traditional ShuffleNet, 

VGGNet, and ResNet. They use the same dataset as [11]. Their proposed method achieved a tire crack 

defect detection rate of 94.7%. 

 

 

Ⅲ.  Proposed Model 
 

In recent years, TL is a promising method in DL. Its prominence lies in its remarkable ability to 

enhance the performance of DL by harnessing the wealth of knowledge accumulated from pre-trained 

models. The concept of TL is rooted in the idea that a neural network trained on a large, diverse dataset 

can serve as a foundational knowledge base. This knowledge can then be fine-tuned for a specific task. 

Therefore, it enables the model to learn and achieve good performance with less data compared to 

training from scratch. Figure 1 provides a visual representation of the steps involved in implementing 

CNN-based. 

 

 
Figure 1. CNN Model 

 

In order to gain high performance, three different CNN-based, EfficientNet, VGG19, and 

DenseNet121, are used. And pre-trained weights obtained from huge data (ImageNet) is applied. The 

fine-tuning stage is done by replacing the last classification layer with two classes, normal and cracked 

class. This last layer is directly connected to the fully connected layer in the previous layer. The analysis 

is more emphasized on the model that has the best experimental results, namely the DenseNet121. This 

model combines all the feature maps from all layers, and the feature maps are propagated to successive 

layers and connected to the newly produced feature maps. 

In addition, this model includes dense blocks for feature map sampling to make the structure feasible. 

So, the main computational processes are convolutional, normalization, and activation. The convolution 

is an operation involving a two-dimensional matrix that transforms across the image following the 

equation: 

 
Where  and  represents an image with dimensions, while the kernel dimension is a square matrix 

with a size that is not greater than the dimension. To optimize the model's performance, we took a 

strategic approach to training. Initially, we froze the layers from the convolutional and pooling layers 

right up to the second transition layer. Subsequently, we focused on fine-tuning the remaining layers, 

specifically the pre-training weights of solid blocks comprising fully connected layers. 

 

 

Ⅳ. Experiment and Results 
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4.1. Dataset 

In this study, we utilized a dataset comprising a total of 1028 tire images, categorized into two classes: 

cracked and normal [9]. These images were captured from diverse angles, distances, lighting conditions, 

and with varying degrees of dirt present. The intention behind this approach is to ensure that the training 

set closely resembles the types of photos an average end-user might take using their smartphone. An 

example from this tire dataset is illustrated in Figures 2. 

 

 
Figure 2. Images of tires dataset. a) normal tires b) cracked tires 

 

 
Figure 3. Analysis of normal tires dataset images  

 

 
Figure 4. Analysis of cracked tires dataset images  
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Analysis of the image dataset, comprising both cracked and normal tires, reveals several noteworthy 

observations: image size variability, one prominent feature is the variation in tire image sizes as shown 

in Figures 3 and 4. An examination indicates that a significant number of these images tend to follow a 

square crop format. This consistency in aspect ratio simplifies preprocessing tasks and ensures 

uniformity in subsequent analysis. This diversity includes images of tire treads, sidewalls, brand names, 

and detailed tire specifications. This heterogeneity poses an interesting challenge in the classification 

task, as the model must be capable of identifying cracks across various regions of the tire. Zoomed 

cracked images, notably, the images labeled as cracked tires predominantly contain zoomed snapshots of 

tire cracks. These zoomed-in images provide a detailed view of the cracks, aiding in the identification of 

tire wear and degradation. Understanding the prevalence of such images is crucial for the development 

of an effective classification model. The dataset analysis highlights the need for a versatile model. It 

should handle varying image sizes, identify cracks in different tire regions, and effectively process 

zoomed images to detect tire wear and degradation. 

 

4.2. Experimental Setting 

The establishment of an optimal setting is crucial for the progression of tire detection. A tailored 

Python development environment, utilizing resources like anaconda for virtual Environment, ensures 

project isolation. Essential libraries, including TensorFlow, Keras, pandas, NumPy, matplotlib, and 

Scikit-learn, are incorporated into this setup. 

In the context of this experiment, we determined various hyperparameters applied to the model. For 

the input shape, we tested two configurations, namely 224224 and 256256, with the aim of 

understanding how changes in resolution could affect the model's performance. As the optimizer, we 

selected Adam and SGD, which has proven effective in neural network optimization. We adopted the 

binary cross entropy loss function, which is suitable for the binary classification task we conducted in 

this experiment. Binary cross entropy is the loss function used in many binary classification problems. In 

this case, if  represents the model's output (predictions) and y represents the true labels, the formula is 

as follows:  

 
Here,  is the number of data samples,  and  the elements at the  -th position of the true label 

vector and prediction vector, respectively. 

For pooling operations, we utilized average pooling to aggregate information across different layers 

effectively. Then implemented dropout with a dropout rate of 0.2 to prevent overfitting and maintain 

model generalization. The parameters as shown in Table 1, with number of epochs during training is 100.  

 

Table 1. The hyperparameters used in the experiments. 

Parameters Values 

Input shape 
Optimizer 
Loss function 
Pooling 
Dropout rate 
Weight 
Classifier 

224224, 256256  
Adam, SGD 
Binary cross entropy 
Avg, Max 

0.2, 0.3 
ImageNet 
Sigmoid 

 

4.3. Results 

In the assessment, we gauge the model's efficacy primarily through its accuracy. Accuracy serves as a 

quantitative measure of the model's ability to correctly classify tires as either normal or cracked. It offers 

valuable insights into the model's predictive capabilities, shedding light on how effectively it 

distinguishes between these two categories. This evaluation metric serves as a key indicator of the 

model's performance in the context of tire classification. We utilize a confusion matrix, which 

incorporates metrics such as accuracy, sensitivity, and precision, as illustrated in the following 

equations: 



18 JOURNAL OF PLATFORM TECHNOLOGY   VOL. 11, NO. 6, DECEMBER 2023 

 

 

 
 

 
 

Sensitivity, also known as recall, is a measure that assesses our model's ability to identify all true 

positive instances in the dataset. It measures the ratio of the number of true positives predicted to the 

total number of actual positives. Sensitivity is particularly valuable when false positives can have 

significant consequences. 

 
 

Precision describes how accurate our model's positive predictions are. It is the ratio of the number of 

true positives predicted to the total number of positive predictions made by the model. Precision is 

crucial when the consequences of false positives can be significant. By using these three metrics, we can 

comprehensively understand our model's performance. The confusion matrix provides deeper insights 

than a single accuracy figure, enabling us to measure our model's reliability in various scenarios. 

 

 
Figure 5. Accuracy and loss graph DenseNet121 based on transfer learning models. 

 

Table 2. The comparison between EfficientNet, VGG19, and DenseNet121 models 

Models Accuracy Sensitivity Precision 

EfficientNet 
VGG19 

DenseNet121 

0.79 
0.78 
0.95 

0.79 
0.80 
0.94 

0.67 
0.65 
0.76 

 

In this experiment, we conducted a comparison of three models: EfficientNet, VGG19, and 

DenseNet121, assessing their performance in terms of accuracy, sensitivity, and precision. The results 

showed differences in the performance of these models (Table 2). DenseNet121 achieved the highest 

accuracy score of 0.95, surpassing EfficientNet (0.79) and VGG19 (0.78). In terms of sensitivity, 

DenseNet121 performed well with a score of 0.94, which closely aligns with its overall accuracy. 

EfficientNet and VGG19 exhibited similar sensitivities, scoring 0.79 and 0.80, respectively. Figure 5 

illustrates the accuracy and loss graphs for the DenseNet121 models employing TL. These graphs 

provide an insight into the performance of models over the training epochs. 

Regarding precision, DenseNet121 led with a precision score of 0.76, while EfficientNet and VGG19 

achieved precisions of 0.67 and 0.65, respectively. These results suggest that DenseNet121 provides 

accurate and sensitive outcomes, while EfficientNet and VGG19 deliver more consistent but slightly less 

impressive performance compared with DenseNet121 models. 

 

 

Ⅴ. Conclusion 
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This study analyzes the most effective deep-learning approaches for predicting tire conditions based 

on images. Three models were evaluated for performance: EfficientNet, VGG19, and DenseNet121. 

Compared to other models, DenseNet121 achieves a score of 0.9515 in terms of accuracy. However, it is 

essential to acknowledge that this study has several limitations that can be explored in future research. 

For instance, the model developed in this study is mainly focused on distinguishing between normal and 

cracked tires. While these contributions are important and valuable in detecting tire defects, real-world 

tire conditions involve greater complexity. Tire defects can appear in many forms, such as air bubbles, 

foreign objects embedded in the tire, and other complex anomalies that go beyond the binary 

classification of normal and cracked tires. To create more comprehensive and effective tire defect 

detection models, future research could explore expanding the model's capabilities to cover a broader 

spectrum of tire abnormalities. This expansion may involve incorporating additional image data and 

developing a more nuanced classification system to identify and categorize different tire defects. In 

addition, it is crucial to consider the practical application of the developed model. While achieving high 

levels of accuracy in a controlled research environment is a good thing, implementing a model like this 

in the real world involves a few challenges regarding data collection, model implementation, and 

scalability. Researchers and practitioners may need to explore strategies to collect diverse and 

representative tire image data from various sources and conditions to ensure model robustness in real-

world scenarios. 

In conclusion, this study shows the potential of DL models, especially the DenseNet121 model with 

TL, in the domain of tire defect prediction based on image analysis. While the findings are promising, 

the study also highlights the need for further research to address the limitations and challenges 

associated with real-world tire defect detection. By addressing these complexities, the field can advance 

toward more accurate and practical tire condition assessment, which will contribute to improved road 

safety and vehicle maintenance. 
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