KIPS Transactions on Software and Data Engineering
/
v.8
no.12
/
pp.483-490
/
2019
In the Network Intrusion Detection System (NIDS), the function of classification is very important, and detection performance depends on various features. Recently, a lot of research has been carried out on deep learning, but network intrusion detection system experience slowing down problems due to the large volume of traffic and a high dimensional features. Therefore, we do not use deep learning as a classification, but as a preprocessing process for feature extraction and propose a research method from which classifications can be made based on extracted features. A stacked AutoEncoder, which is a representative unsupervised learning of deep learning, is used to extract features and classifications using the Random Forest classification algorithm. Using the data collected in the IOT environment, the performance was more than 99% when normal and attack traffic are classified into multiclass, and the performance and detection rate were superior even when compared with other models such as AE-RF and Single-RF.
Sun, Young Ghyu;Hwang, Yu Min;Sim, Issac;Kim, Jin Young
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.17
no.4
/
pp.138-149
/
2018
In this paper, we propose a system model which effectively mitigates impulsive noise that degrades the performance of power line communication. Recently, deep learning have shown effective performance improvement in various fields. In order to mitigate effective impulsive noise, we applied a convolution neural network which is one of deep learning algorithm to conventional system. Also, we used a successive interference cancellation scheme to mitigate impulsive noise generated from multi-users. We simulate the proposed model which can be applied to the power line communication in the Section V. The performance of the proposed system model is verified through bit error probability versus SNR graph. In addition, we compare ZF and MMSE successive interference cancellation scheme, successive interference cancellation with optimal ordering, and successive interference cancellation without optimal ordering. Then we confirm which schemes have better performance.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.2
/
pp.115-122
/
2017
This paper proposes a deep learning algorithm based sign detection and recognition system for the blind. The proposed system is composed of sign detection stage and sign recognition stage. In the sign detection stage, aggregated channel features are extracted and AdaBoost classifier is applied to detect regions of interest of the sign. In the sign recognition stage, convolutional neural network is applied to recognize the regions of interest of the sign. In this paper, the AdaBoost classifier is designed to decrease the number of undetected signs, and deep learning algorithm is used to increase recognition accuracy and which leads to removing false positives which occur in the sign detection stage. Based on our experiments, proposed method efficiently decreases the number of false positives compared with other methods.
Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
Smart Media Journal
/
v.6
no.3
/
pp.41-48
/
2017
Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.8
/
pp.1026-1031
/
2021
With the development of global automotive technology and the expansion of market size, demand for vehicles is increasing, which is leading to a decrease in the number of passengers on the road and an increase in the number of vehicles on the road. This causes traffic jams, and in order to solve these problems, the number of illegal vehicles continues to increase. Various technologies are being studied to crack down on these illegal activities. Previously developed systems use trigger equipment to recognize vehicles and photograph vehicles using infrared cameras to detect the number of passengers on board. In this paper, we propose a vehicle occupant detection system with deep learning model techniques without exploiting existing system-applied trigger equipment. The proposed technique proposes a system to detect vehicles by establishing triggers within images and to apply deep learning object recognition models to detect real-time boarding personnel.
Ismail, Nor Azman;Chai, Cheah Wen;Samma, Hussein;Salam, Md Sah;Hasan, Layla;Wahab, Nur Haliza Abdul;Mohamed, Farhan;Leng, Wong Yee;Rohani, Mohd Foad
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.503-523
/
2022
Nowadays, many attendance applications utilise biometric techniques such as the face, fingerprint, and iris recognition. Biometrics has become ubiquitous in many sectors. Due to the advancement of deep learning algorithms, the accuracy rate of biometric techniques has been improved tremendously. This paper proposes a web-based attendance system that adopts facial recognition using open-source deep learning pre-trained models. Face recognition procedural steps using web technology and database were explained. The methodology used the required pre-trained weight files embedded in the procedure of face recognition. The face recognition method includes two important processes: registration of face datasets and face matching. The extracted feature vectors were implemented and stored in an online database to create a more dynamic face recognition process. Finally, user testing was conducted, whereby users were asked to perform a series of biometric verification. The testing consists of facial scans from the front, right (30 - 45 degrees) and left (30 - 45 degrees). Reported face recognition results showed an accuracy of 92% with a precision of 100% and recall of 90%.
Journal of Korean Society of Industrial and Systems Engineering
/
v.44
no.4
/
pp.1-11
/
2021
Recently, the importance of preventive maintenance has been emerging since failures in a complex system are automatically detected due to the development of artificial intelligence techniques and sensor technology. Therefore, prognostic and health management (PHM) is being actively studied, and prediction of the remaining useful life (RUL) of the system is being one of the most important tasks. A lot of researches has been conducted to predict the RUL. Deep learning models have been developed to improve prediction performance, but studies on identifying the importance of features are not carried out. It is very meaningful to extract and interpret features that affect failures while improving the predictive accuracy of RUL is important. In this paper, a total of six popular deep learning models were employed to predict the RUL, and identified important variables for each model through SHAP (Shapley Additive explanations) that one of the explainable artificial intelligence (XAI). Moreover, the fluctuations and trends of prediction performance according to the number of variables were identified. This paper can suggest the possibility of explainability of various deep learning models, and the application of XAI can be demonstrated. Also, through this proposed method, it is expected that the possibility of utilizing SHAP as a feature selection method.
Ji, HongGeun;Kim, Jina;Hwang, Syjung;Kim, Dogun;Park, Eunil;Kim, Young Seok;Ryu, Seung Ki
KIPS Transactions on Software and Data Engineering
/
v.10
no.5
/
pp.161-168
/
2021
Cracks affect the robustness of infrastructures such as buildings, bridge, pavement, and pipelines. This paper presents an automated crack detection system which detect cracks in diverse surfaces. We first constructed the combined crack dataset, consists of multiple crack datasets in diverse domains presented in prior studies. Then, state-of-the-art deep learning models in computer vision tasks including VGG, ResNet, WideResNet, ResNeXt, DenseNet, and EfficientNet, were used to validate the performance of crack detection. We divided the combined dataset into train (80%) and test set (20%) to evaluate the employed models. DenseNet121 showed the highest accuracy at 96.20% with relatively low number of parameters compared to other models. Based on the validation procedures of the advanced deep learning models in crack detection task, we shed light on the cost-effective automated crack detection system which can be applied to different surfaces and structures with low computing resources.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.12
/
pp.1890-1897
/
2021
People counting is an important technology to provide application services such as smart home, smart building, smart car, etc. Due to the social distancing of COVID-19, the people counting technology attracted public attention. People counting system can be implemented in various ways such as camera, sensor, wireless, etc. according to service requirements. People counting system using WiFi AP uses WiFi CSI data that reflects multipath information. This technology is an effective solution implementing indoor with low cost. The conventional WiFi CSI-based people counting technologies have low accuracy that obstructs the high quality service. This paper proposes a deep learning people counting system based on WiFi CSI data. Data preprocessing using auto-encoder, data augmentation that transform WiFi CSI data, and a proposed deep learning model improve the accuracy of people counting. In the experimental result, the proposed approach shows 89.29% accuracy in 6 subjects.
Eui Jin Hwang;Hyungjin Kim;Soon Ho Yoon;Jin Mo Goo;Chang Min Park
Korean Journal of Radiology
/
v.21
no.10
/
pp.1150-1160
/
2020
Objective: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. Materials and Methods: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. Results: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). Conclusion: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.