Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.291-292
/
2024
국내의 산재 사고 사망 비율 중 대부분은 건설업이 차지하고 있으며 사망 원인 중 42.9%는 추락사가 차지하고 있다. 따라서 국내 사고 사망을 예방하기 위해서는 노동자의 생명을 지켜주는 안전 장비의 착용 여부가 중요하다. 본 논문에서는 객체 탐지에 사용되는 YOLO v4와 YOLO v4-TINY 알고리즘과 영상 처리에 사용되는 OpenCV를 이용하여 실시간 영상에서 안전모 미착용 인원을 감지하고 관리자에게 알려주는 시스템을 개발하였다. 이 시스템을 활용하여 건설 현장에서 현장 카메라로 안전모 미착용 인원을 실시간으로 검출하여 경고하므로써 작업자의 안전에 기여할 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.257-258
/
2024
현재 시각장애인들이 현금을 사용하게 될 시 지폐가 얼마인지 확인할 방법이 없어 불편을 겪거나 금전적 사기를 당할 위험이 잦다. 한국은행에서는 이러한 사고를 막기 위해 점자 지폐를 만들어 발부하고 있지만 시각장애인 91%가 식별하지 못해 많은 불편을 겪고 있다. 본 논문에서는 딥러닝을 활용하여 화폐를 인식하고 TTS 기술을 사용하여 지폐의 값이 얼마인지 소리로 알려주는 시스템을 개발하였다. 지폐 인식을 위해 데이터를 직접 수집하여 YOLOv5 알고리즘을 활용하여 학습시킨 Weights 파일을 사용하였다. 이를 활용하여 시각장애인들은 더 안전하게 현금을 사용하고, 금전적인 문제를 예방할 수 있다.
Proceedings of the Korean Society of Computer Information Conference
/
2024.01a
/
pp.297-298
/
2024
펜데믹, 전쟁 등을 포함한 국제 정세 변화에 따른 물류대란, 원자재가격 상승 및 환율 급등으로 인해 2023년 기준 대한민국의 물가는 크게 오르고 있는 추세이다. 물가 상승은 사업장의 인건비 부담 증가로 이어지고 있고 특히 노동 집약 산업인 농업 분야에서의 인건비 부담 문제는 더욱 심각한 실정이다. 외국인 근로자 고용이 대안이 될 수 있지만 인건비 절감 효과는 미미하기에 농업계 관계자들은 자동화 시스템 도입에 관심이 집중되고 있다. 따라서, 본 논문에서는 사과 분류 작업 자동화 체계의 핵심 요소에 해당하는 사과 품질 실시간 모니터링 시스템을 제안한다. 제안한 방식에서는 딥러닝 기반의 영상 분석 기법 및 무게 센서 데이터 분석을 통해 사과의 품질에 따른 등급 책정을 자동화 한다.
International Journal of Internet, Broadcasting and Communication
/
v.16
no.1
/
pp.280-286
/
2024
In this paper, layered UNet with warmup and dropout tricks was used to segment teeth instantly by using data labeled for each individual tooth and increase performance of the result. The layered UNet proposed before showed very good performance in tooth segmentation without distinguishing tooth number. To do instance segmentation of teeth, we labeled teeth CBCT data according to tooth numbering system which is devised by FDI World Dental Federation notation. Colors for labeled teeth are like AI-Hub teeth dataset. Simulation results show that layered UNet does also segment very well for each tooth distinguishing tooth number by color. Layered UNet model using warmup trick was the best with IoU values of 0.80 and 0.77 for training, validation data. To increase the performance of instance segmentation of teeth, we need more labeled data later. The results of this paper can be used to develop medical software that requires tooth recognition, such as orthodontic treatment, wisdom tooth extraction, and implant surgery.
This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.
In order to diagnose and prevent Alzheimer's Disease (AD), it is becoming increasingly important to develop a CAD(Computer-aided Diagnosis) system for AD diagnosis, which provides effective treatment for patients by analyzing 3D MRI images. It is essential to apply powerful deep learning algorithms in order to automatically classify stages of Alzheimer's Disease and to develop a Alzheimer's Disease support diagnosis system that has the function of detecting hippocampus and CSF(Cerebrospinal fluid) which are important biomarkers in diagnosis of Alzheimer's Disease. In this paper, for AD diagnosis, we classify a given MRI data into three categories of AD, mild cognitive impairment, and normal control according by applying 3D brain MRI image to the Faster R-CNN model and detect hippocampus and CSF in MRI image. To do this, we use the 2D MRI slice images extracted from the 3D MRI data of the Faster R-CNN, and perform the widely used majority voting algorithm on the resulting bounding box labels for classification. To verify the proposed method, we used the public ADNI data set, which is the standard brain MRI database. Experimental results show that the proposed method achieves impressive classification performance compared with other state-of-the-art methods.
Network security is an interesting area in Information Technology. It has an important role for the manager monitor and control operating of the network. There are many techniques to help us prevent anomaly or malicious activities such as firewall configuration etc. Intrusion Detection System (IDS) is one of effective method help us reduce the cost to build. The more attacks occur, the more necessary intrusion detection needs. IDS is a software or hardware systems, even though is a combination of them. Its major role is detecting malicious activity. In recently, there are many researchers proposed techniques or algorithms to build a tool in this field. In this paper, we improve the performance of IDS. We explore and analyze the impact of activation functions applying to recurrent neural network model. We use to KDD cup dataset for our experiment. By our experimental results, we verify that our new tool of IDS is really significant in this field.
Journal of the Korea Society of Computer and Information
/
v.22
no.12
/
pp.101-108
/
2017
The study proposed a system that filters the data that is entered when analyzing big data such as SNS and BLOG. Personal information includes impersonal personal information, but there is also personal information that distinguishes it from personal information, such as religious institution, personal feelings, thoughts, or beliefs. Define these personally identifiable information as sensitive information. In order to prevent this, Article 23 of the Privacy Act has clauses on the collection and utilization of the information. The proposed system structure is divided into two stages, including Big Data Processing Processes and Sensitive Information Filtering Processes, and Big Data processing is analyzed and applied in Big Data collection in four stages. Big Data Processing Processes include data collection and storage, vocabulary analysis and parsing and semantics. Sensitive Information Filtering Processes includes sensitive information questionnaires, establishing sensitive information DB, qualifying information, filtering sensitive information, and reliability analysis. As a result, the number of Big Data performed in the experiment was carried out at 84.13%, until 7553 of 8978 was produced to create the Ontology Generation. There is considerable significan ce to the point that Performing a sensitive information cut phase was carried out by 98%.
Kim, Joo-Sik;Choi, Kyu-Nam;Lee, Hyung-Geun;Kang, Sung-Woo
Journal of the Korea Safety Management & Science
/
v.22
no.1
/
pp.1-8
/
2020
Maintenance of power distribution facilities is a significant subject in the power supplies. Fault caused by deterioration in power distribution facilities may damage the entire power distribution system. However, current methods of diagnosing power distribution facilities have been manually diagnosed by the human inspector, resulting in continuous pole accidents. In order to improve the existing diagnostic methods, a thermal image analysis model is proposed in this work. Using a thermal image technique in diagnosis field is emerging in the various engineering field due to its non-contact, safe, and highly reliable energy detection technology. Deep learning object detection algorithms are trained with thermal images of a power distribution facility in order to automatically analyze its irregular energy status, hereby efficiently preventing fault of the system. The detected object is diagnosed through a thermal intensity area analysis. The proposed model in this work resulted 82% of accuracy of detecting an actual distribution system by analyzing more than 16,000 images of its thermal images.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.8
/
pp.4300-4314
/
2019
With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.