• 제목/요약/키워드: Decoupling Method

검색결과 247건 처리시간 0.025초

비압축성 나비어-스톡스 방정식의 완전 내재적 분리 방법 (Fully-Implicit Decoupling Method for Incompressible Navier-Stokes Equations)

  • 김경연;백승진;성형진
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1317-1325
    • /
    • 2000
  • A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).

능동 전력 디커플링 회로의 커패시턴스 최적 설계에 관한 연구 (A Study on Optimal Design of Capacitance for Active Power Decoupling Circuits)

  • 백기호;박성민;정교범
    • 전력전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Active power decoupling circuits have emerged to eliminate the inherent second-order ripple power in a single-phase power conversion system. This study proposes a design method to determine the optimal capacitance for active power decoupling circuits to achieve high power density. Minimum capacitance is derived by analyzing ripple power in a passive power decoupling circuit, a buck-type circuit, and a capacitor-split-type circuit. Double-frequency ripple power decoupling capabilities are also analyzed in three decoupling circuits under a 3.3 kW load condition for a battery charger application. To verify the proposed design method, the performance of the three decoupling circuits with the derived minimum capacitance is compared and analyzed through the results of MATLAB -Simulink and hardware-in-the-loop simulations.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

LMI기법을 이용한 정방 비결합 제어기의 $H_2$설계 ($H_2$ Design for the Square Decoupling Controllers Using LMI Method)

  • 이종성;강기원;조용석;박기헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2645-2647
    • /
    • 2000
  • This paper presents an LMI(Linear Matrix Inequalities) method for designing the optimal decoupling controller. The proposed controller based on the Two-Degree-of-Freedom configuration considers both the performance of controller and decoupling properties. The decoupling controller parameters are obtained from LMI method for computational efficiency.

  • PDF

Adaptive Decoupling for IPM Machine(ICCAS 2005)

  • Cho, Sung-Uk;Park, Seung-Kyu;Ahn, Ho-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1617-1620
    • /
    • 2005
  • The current control for interior permanent magnet machines is more complicate than surface permanent magnet machine because of its torque characteristic depending on the reluctance. For high performance torque control, it requires state decoupling between the d-current and q-current dynamics. However the variation of the inductances, which couples the state dynamics of the currents, makes the state decoupling difficult. So some decoupling methods have developed to cope this variations and each current can be regulated independently. This paper presents a novel approach for fully decoupling the states cross-coupling using parameter adaptation. The adaptation method is based on the error between reference currents and the currents with state decoupling which have to follow the references. This method is more object-oriented than the other online parameter estimation methods in IPM machine and other electrical machines

  • PDF

능동 전력 디커플링을 위한 3권선 방식의 플라이백 인버터 설계 (Design of Three-port Flyback Inverter for Active Power Decoupling)

  • 김규동;김준구;이태원;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2012년도 전력전자학술대회 논문집
    • /
    • pp.486-487
    • /
    • 2012
  • In this paper, novel three-port active power decoupling (APD) method for applying 250[W] micro-inverter. This type using third port for active power decoupling stores the surplus energy and supplies sufficient energy to grid. Conventional decoupling circuit is applied in single phase grid connected micro-inverter especially single-stage configuration like flyback-type DC-AC inverter. In this passive power decoupling method, electrolytic capacitor with large capacitance is needed for decoupling from constant DC power and instantaneous AC power. However the decoupling capacitor is replaced with film capacitor by using APD, thus the overall system can achieve smaller size and long lifespan. Proposed three-port flyback inverter is verified by design and simulation.

  • PDF

전원 잡음을 줄이기 위한 평면계획 단계에서의 Decoupling Capacitance 할당 (Decoupling Capacitance Allocation at the Floorplan Level for Power Supply Noise Reduction)

  • 허창룡;임종석
    • 대한전자공학회논문지SD
    • /
    • 제42권9호
    • /
    • pp.61-72
    • /
    • 2005
  • 본 논문에서는 평면계획 단계에서 모듈의 전원 잡음을 줄이기 위해 필요한 decoupling capacitance를 효과적으로 할당하는 방법을 제시한다. 먼저, 각 모듈의 decoupling capacitance가 과대평가되고 추가 면적 삽입으로 모듈의 전원 잡음이 변하는 기존 접근 방법의 문제점을 살펴보고, 이를 해결할 수 있는 새로운 방법을 제시한다. 또한, 선형프로그래밍 방법보다 빠른 시간 내에 decoupling capacitance 면적을 위한 빈 공간을 할당하는 간단한 휴리스틱 방법을 제안한다. 실험결과에서 제시된 방법은 Zhao[4]의 방법과 비교하여 decoupling capacitance 면적이 평균 $7.9\%$ 감소하고, 이로 인해 평면계획 결과의 전체 면적과 와이어 길이가 감소하였다. 또한, 추가 면적 삽입으로 인한 모듈의 전원 잡음 문제를 잘 해결하고 있음을 확인하였다. 수행시간 비교에서는 평균 $11.6\%$의 향상을 보였다.

A Decoupling Method of Separable-Denominator Two-Dimensional Systems

  • Kawakami, Atsushi
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.633-636
    • /
    • 2000
  • The decoupling of the systems is to let the inputs and outputs correspond one to one, by performing the state feedback or the output feedback on the given systems. In this paper, we propose a method for decoupling the separable-denominator two-dimensional systems. And, we study about the realization dimension of the dynamical feedback and the dynamical feedforward performed for decoupling.

  • PDF

비압축성 Navier-Stokes 방정식에 대한 내재적 속도 분리 방법 (An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations)

  • 김경연;백승진;성형진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.129-134
    • /
    • 2000
  • An efficient numerical method to solve the unsteady incompressible Navier-Stokes equations is developed. A fully implicit time advancement is employed to avoid the CFL(Courant-Friedrichs-Lewy) restriction, where the Crank-Nicholson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity-pressure decoupling is achieved in conjunction with the approximate factorization. Main emphasis is placed on the additional decoupling of the intermediate velocity components with only n th time step velocity The temporal second-order accuracy is Preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving the turbulent minimal channel flow unit.

  • PDF

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.