Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.3
/
pp.109-122
/
2023
As platforms become primary decision making tools, platforms for decision have been introduced to improve quality of decision results. Because, decision platforms applied augmented decision-making process which uses experiences and feedback of users. This process creates a variety of alternatives tailored for users' abilities and characteristics. However, platform users choose alternatives before considering significant quality factors based on securing decision quality. In real world, platform managers use an algorithm that distorts appropriate alternatives for their commercial benefits. For improving quality of decision-making, preceding researches approach trying to increase rational decision -making ability based on experiences and feedback. In order to overcome bounded rationality, users interact with the machine to approach the optional situation. Differentiated from previous studies, our study focused more on characteristics of users while they use decision platforms. This study investigated the impact of quality factors on decision-making using platforms, the dimensions of systematic factors and user characteristics. Systematic factors such as platform reliability, data quality, and user characteristics such as user abilities and biases were selected, and measuring variables which trust, satisfaction, and loyalty of decision platforms were selected. Based on these quality factors, a structural equation research model was created. A survey was conducted with 391 participants using a 7-point Likert scale. The hypothesis that quality factors affect trust was proved to be valid through path analysis of the structural equation model. The key findings indicate that platform reliability, data quality, user abilities, and biases affect the trust, satisfaction and loyalty. Among the quality factors, group bias of users affects significantly trust of decision platforms. We suggest that quality factors of decision platform consist of experience-based and feedback-based decision-making with the platform's network effect. Through this study, the theories of decision-making are empirically tested and the academic scope of platform-based decision-making has been further developed.
This study investigates the effect of group size on group performance, here the quality of group decision, Four effects are proposed and tested in a field experimental setting : (1) the relationship between the group size and the distribution of individual's problem-solving ability ; (2) the change of the group decision quality as group size increases ; (3) the relationship between the group decision quality and the quality of the best/worst member as group size increases ; (4) the relationship between the group decision quality and the average quality of individuals in the group as group size increases. Data showed that contrary to the exiting results, group decision quality was not improved with the group size. Rather, it showed a little tendency that group decision quality was worsened with the group size. Data also showed that consensus-oriented group decision making process produced the compromised output. Thus, group decision quality was not better than the average group members'. The opinion of the best member was not accepted. The implications of the findings are discussed for the development of a Korean GSS.
Journal of Information Technology Applications and Management
/
v.14
no.4
/
pp.75-96
/
2007
The effects of information quality and the importance of information have been reported in the Information Systems (IS) literature. However, little has been learned about the impact of information visualization types and contextual information on decision quality. Therefore, this study investigated the interaction effects of these variables on decision quality by conducting a laboratory experiment. Based on two types of information visualization and the availableness of contextual information, this study had a $2{\times}2$ factorial design. The dependent variables used to measure the outcomes of decision quality were decision accuracy and time. The results demonstrated that the effects of contextual information on decision quality were significant. In addition, there was a significant main effect of information visualization on decision accuracy. The findings suggest that decision makers can expect to improve their decision quality by enhancing information visualization types and contextual information. This research may extend a body of research examining the effects of factors that can be tied to human decision-making performance.
Kim, Hye Sook;Chae, Young-Moon;Tark, Kwan-Chul;Park, Hyun-Ju;Ho, Seung-Hee
Quality Improvement in Health Care
/
v.8
no.2
/
pp.186-207
/
2001
Background : This study presented an analysis of healthcare quality indicators using data mining and a development of decision support system for quality improvement. Method : Specifically, important factors influencing the key quality indicators were identified using a decision tree method for data mining based on 8,405 patients who discharged from a medical center during the period between December 1, 2000 and January 31, 2001. In addition, a decision support system was developed to analyze and monitor trends of these quality indicators using a Visual Basic 6.0. Guidelines and tutorial for quality improvement activities were also included in the system. Result : Among 12 selected quality indicators, decision tree analysis was performed for 3 indicators ; unscheduled readmission due to the same or related condition, unscheduled return to intensive care unit, and inpatient mortality which have a volume bigger than 100 cases during the period. The optimum range of target group in healthcare quality indicators were identified from the gain chart. Important influencing factors for these 3 indicators were: diagnosis, attribute of the disease, and age of the patient in unscheduled returns to ICU group ; and length of stay, diagnosis, and belonging department in inpatient mortality group. Conclusion : We developed a decision support system through analysis of healthcare quality indicators and data mining technique which can be effectively implemented for utilization review and quality management in a healthcare organization. In the future, further number of quality indicators should be developed to effectively support a hospital-wide Continuous Quality Improvement activity. Through these endevours, a decision support system can be developed and the newly developed decision support system should be well integrated with the hospital Order Communication System to support concurrent review, utilization review, quality and risk management.
This study was intended to examine how the job stress of enterpriser affects decision quality when they make rational decision making, and to empirical analysis on whether decision quality can be enhanced through corporate network and absorption capacity. For this purpose, 356 survey data were collected from small business enterpriser and analyzed using SPSS v.25 and AMOS v.24. Studies have shown that among job stress, challenging stress has positive(+) influence on decision quality, disturbing stress has negative(-) influence on decision quality, and both corporate network and absorption capacity have positive(+) influence on decision quality. In addition, challenge stress and hindrance stress have been shown to have a positive(+) influence on decision quality through corporate network and absorption capacity. These findings confirmed that the challenge factors of job stress had a positive effect on decision quality, and confirmed that the corporate network and absorption capacity were important factors in enhancing decision-making products. As such, conclusions were discussed and implications and directions for follow-up studies were presented.
The purposes of this paper are to compare expert systems and decision support systems, and illustrate the possible benefits when expert systems are integrated into the model base of a decision support systems for supporting decision-makers. Integrating expert systems capability into decision support systems may enhance the quality and efficiency of both computerized systems. This integration can improve selection of model, analysis, model management, judgement, and modeling. Thus the results are much more powerful decision support systems than are presently available.
The effects of information quality and the importance of information have been reported in the information Systems(IS) literature. However, little has been learned about the impact of data quality(DQ) on decision performance. Recognizing with this problem, this study explores the effects of contextual DQ on decision performance. To examine them, a laboratory experiment was conducted. Based on two levels of contextual DQ and two levels of task complexity, this study had a $2{\times}2$ factorial design. The dependent variables used to measure the outcomes of decision performance were problem-solving accuracy and time. The results demonstrated that the effects of contextual DQ on decision performance were significant. The findings suggest that decision makers can expect to improve their decision performance by enhancing contextual DQ. This research not only extends a body of research examining the effects of factors that can be tied to human decision-making performance, but also provides empirical evidence to validate and extend DeLone and McLean's IS success model.
Most of the research on a group decision support system [GDSS] has focused on directly examining its effect on the decision outcomes. Under this research framework, however, the role of group interaction process is largely ignored. This study focuses on the effect of the group interaction process on decision-making performance when a GDSS is used as the only medium for group interaction. Specifically, this study sought to determine whether significant relationships exist between the quality of the decision and the decision functions, contingent phases, and different decision paths. Natural interaction processes of decision -making groups was simulated in an experimental setting in which volunteer subjects from several business classes were assigned to dispersed three-person groups undertook the experimental task via a decision network. A baseline GDSS was developed for this setting. The results of this study confirmed earlier studies in a non - GDSS setting to suggest significant effects of decision functions and contingent phases on the quality of decision but no significant relationship between decision path and the quality of group decision.
Magazine of the Korean Society of Agricultural Engineers
/
v.42
no.5
/
pp.103-113
/
2000
A decision support system DSS-WQMRA (Decision Support System-Water Quality Management in Rural Area) was developed to help regional planners for the water quality management in a rural basin. The integrated model DSS-WQMRA, written in JAVA, includes four subsystems such as a GIS, a database, water quality simulation models and a decision model. In the system, the GIS deals with landuse and the location of pollutant sources. The database manages each data and supplies input data for various water quality simulation models. the water quality simulation model is composed of the GWLF( Generalized Watershed Loading Function), PCLM(Pollutant Loading Calculation Module) and the WASP5 model. The decision model based on mixed integer programming is designed to determine optimal costs and thus allow the selection of managemental practices to meet the water quality criteria. The methodology was tested with an example application in the Bokha River Basin, Kyunggi Province in Korea. It was proved that the integrated model DSS-WQMRA could be very useful for water quality management including the non-point source pollution in rural areas.
Purpose: This study aims to investigate the impact of two types of information quality, which are platform-oriented information quality and customer-oriented information quality, on customers' decision-making processes in the Online to offline (O2O) platform environment. Grounded in the product brokering efficiency model, which encompasses screening cost, evaluation cost, and decision quality, a model framework was developed. Furthermore, this study explores how these decision-making processes affect customer loyalty. Methods: Given that food delivery apps are the most widely used O2O service in Korea, this study targeted users of these apps for data analysis. We conducted hypothesis testing through a purposive sampling methodology focusing on food delivery app users. A Partial Least Squares Structural Equation Modeling analysis was conducted to analyze the data. The data collection occurred via an online survey from October to December 2021, with a total of 212 respondents participating. Results: The results of this study revealed the significant role of information quality in helping customers' decision processes while using food delivery apps. Specifically, it was found that platform-oriented information positively influences decision quality, while customer-oriented information significantly affects both the reduction of evaluation cost and the enhancement of decision quality. Additionally, the study indicated that lower evaluation costs and higher decision quality lead to increased platform loyalty. However, a reduction in screening cost did not have a significant impact on platform loyalty. Conclusion: While previous studies have overlooked the existence of two sides, service provider and user, in a platform, this research holds significance in its analysis of how information quality impacts loyalty by utilizing the two kinds of information quality. Practitioners can enhance customer loyalty to the platform by enriching customer-oriented information, thereby reducing customers' evaluation costs and encouraging more loyal usage of the platform.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.