Decimal fractions are the practical system of notations representing real numbers. The set of decimal fractions with the definition of comparison of decimal fractions and the identification of their double representations is essentially the field of real numbers. Therefore, we have to clarify the concept of decimal fractions. However, there are problematics that the aquisition of the concept of decimal fractions is not easy. In this paper, we attempt to eradicate the problematics relevant to the acquisition of decimal fractions discussed above and find the desirable direction of instruction of meaning for mathematical symbols: The case of decimal fractions. In J. Hiebert & decimal fractions. First of all, we clarify the essence of them - ratio, operator and linearity. And we compare and analyse the theories about decimal fractions of Resnick, Drexel, Brousseau and Hiebert and the contents of texts about decimal fractions in Korea. Finally, we suggest the efficient instruction methods which are faithful to the essence of decimal fractions and choose some methods among them to plan the classroom instruction and implement the methods in the classroom.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.1
/
pp.37-62
/
2014
In this thesis, we inquire into teaching method of decimal fraction concept in elementary mathematics education based on measurement activity. For this purpose, our research tasks are as follows: First, we design a experimental learning-teaching plan of 'decimal fraction' unit in 4th grade textbook and verify its effect. Second, after teaching experiment using experimental learning-teaching plan, we analyze the student's status of understanding about decimal fraction concept. As stated above, we have performed teaching experiment which is ruled by new lesson design and analysed the effects of teaching experiment. Through this study, we obtained the following results. First, introduction of decimal fraction based on measurement activity promotes student's understanding of measuring number and decimal notation. Second, operator concept of decimal fraction is widely used in daily life. Its usage is suitable for elementary mathematics education within the decimal notation system. Third, a teaching method of times concepts using place value expansion of decimal fraction is more meaningful and has less possibility of misunderstanding than mechanical shift of decimal point. Fourth, teaching decimal fraction through the decimal expansion helps students with understanding of digit 0 contained in decimal fraction, comparing of size and place value. Fifth, students have difficulties in understanding conversion process of decimal fraction into decimal notation system using measurement activity. It can be done easily when fraction is used. However, that is breach to curriculum. It is necessary to succeed research for this.
The purpose of this study is searching for the problems and alternatives on teaching for repeating decimal. To accomplish the purpose, we have analyzed the fifth, sixth, and seventh Korean national curriculums, textbooks and examinations for the eighth grade about repeating decimal. W also have analyzed textbooks from USA to find for alternatives. As the results, we found followings. First, the national curriculums blocked us verifying the relation between rational number and repeating decimal. Second, definitions of terminating decimal, infinite decimal, and repeating decimal are slightly different in every textbooks. This leads seriously confusion for students examinations. The alternative on these problems is defining the terminating decimal as following; decimal which continually obtains only zeros in the quotient. That is, we have to avoid the representation of repeating decimal repeated nines under a declared system which apply an infinite decimal continually obtaining only zeros in the quotient. Then, we do not have any problems to verify the following statement. A number is a rational number if and only if it can be represented by a repeating decimal.
The decimal fraction concept plays an important role in understanding the real number which is one of the major concepts in school mathematics. In the school mathematics of Korea, the decimal fraction is treated merely as a sort of name of the common fraction, while many other important aspects of the decimal fraction concept are ignored. In consequence students fail to understand the decimal fraction concept properly, and merely consider it as a kind of number for formal computation. Preceding studies also identified students' narrow understanding of the decimal fraction concept. But none of them succeeded in clarifying the essences of the decimal fraction concept, which are crucial for discussing the didactical problems of it. In this study we attempted a didactical analysis of the decimal fraction concept and disclosed the roots of didactical problems and presented measures for its improvement. First, we attempted a phenomenological analysis of the decimal fraction concept and extracted 9 elements of the decimal fraction concept. Second, we has analyzed of the essence of the decimal fraction concept more clearly by relating it to the situations where it functions and its representations. For this we tried to construct the conceptual field of the decimal fraction. Third, we categorized he developmental levels of the decimal fraction concept from the aspect of external manifestation of the internal order. On the basis of these results, we attempted hierarchical structuring of the elements of the decimal fraction concept. And using the results of such a didactical analysis on the decimal number concept we analyzed the mathematics curriculum and textbooks of our country, investigated levels of students' understanding of the decimal fraction concept, and disclosed related problems. Finally we suggested directions and measures for the improvement of teaching decimal fraction concept.
Journal of Elementary Mathematics Education in Korea
/
v.12
no.1
/
pp.1-25
/
2008
The purpose of this study was to identify pre-service teachers' Pedagogical Content Knowledge (PCK) about decimal calculation. A written questionnaire was developed dealing with decimal calculation. A total of 152 pre-service teachers from 3 universities were selected for this study; they had taken an elementary mathematics teaching method course and had no teaching experience. The results were as follows: First, with regard to the method of decimal calculation, most pre-service teachers were familiar with algorithms introduced in the textbook. But with regard to the meaning of decimal calculations, they had difficulties in understanding decimal multiplication or decimal division with decimal number. Second, pre-service teachers recognized reasons of errors as well as errors patterns that student might make. But this recognition was limited mainly to errors related to natural number calculation. Third, pre-service teachers frequently commented about decimals algorithms, picture models, the meanings of decimal calculations, and connections to natural number calculations. Many of them represented the meanings of decimal calculations through picture models as to help students' understanding, while they just mentioned algorithms or treated decimal calculation as natural number calculations with decimal point.
In this article, We explained the historical origin and significance of decimal fraction, and draw some educational implications based on that. In general, it is accepted that decimal fraction was first invented by a Belgian man, Simon Stevin(1548-1620). In short, the idea of infinite decimal fraction refers to the ratio of the whole quantity to a unit. Stevin's idea of decimal fraction is significant for the history of mathematics in that it broke through the limit of Greek mathematics which separated discrete quantity from continuous quantity, and number from magnitude, and it became the origin of modern number concept. H. Eves chose the invention of decimal fraction as one of the "Great moments of mathematics."The method of teaching decimal fraction in our school mathematics tends to emphasize the computational aspect of decimal fraction too much and ignore the conceptual aspect of it. In teaching decimal fraction, like all the other areas of mathematics, the conceptual aspect should be emphasized as much as the computational aspect.al aspect.
Decimal Fraction with a significant meaning is being treated for long periods, from elementary school to high school. It is necessary to consider in a course of guidance about various aspects of decimal Fraction first of all in order that student understand well about the concert of it. If you overlook guidance of various means of decimal Fraction, Previously learned number system is limited understand of Decimal Fraction concept or meaning of Decimal Fraction limited to the one is difficult to calculate the Decimal Fraction, even can weaken understand of Real Number. Accordingly, in this study, we would like to separate meanings of the Decimal Fraction, focusing on the role and function of the Decimal Fraction in various situations used the Decimal Fraction. Based on this, we analyzed and criticized how to introduce the Decimal Fraction in elementary school textbooks according to the 7th curriculum.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.1
/
pp.1-18
/
2011
The purpose of this study was to investigate the effects of estimation strategy on placing decimal point in multiplication and division of decimals. To examine the effects of improving calculation ability and reducing decimal point errors with this estimation strategy, the experimental research on operation with decimal was conducted. The operation group conducted the decimal point estimation strategy for operating decimal fractions, whereas the control group used the traditional method with the same test paper. The results obtained in this research are as follows; First, the estimation strategy with understanding a basic meaning of decimals was much more effective in calculation improvement than the algorithm study with repeated calculations. Second, the mathematical problem solving ability - including the whole procedure for solving the mathematical question - had no effects since the decimal point estimation strategy is normally performed after finishing problem solving strategy. Third, the estimation strategy showed positive effects on the calculation ability. Th Memorizing algorithm doesn't last long to the students, but the estimation strategy based on the concept and the position of decimal fraction affects continually to the students. Finally, the estimation strategy assisted the students in understanding the connection of the position of decimal points in the product with that in the multiplicand or the multiplier. Moreover, this strategy suggested to the students that there was relation between the placing decimal point of the quotient and that of the dividend.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.1
/
pp.199-219
/
2011
In this thesis, we designed a experimental learning-teaching plan of 'decimal fraction concept' at the 4-th grade level. We rest our plan on two basic premises. One is the fact that a essential concept of decimal fraction is 'polynomial of which indeterminate is 10', and another is the fact that the origin of decimal fraction is successive measurement activities which improving accuracy through decimal partition of measuring unit. The main features of our experimental learning-teaching plan is as follows. Firstly, students can experience a operation which generate decimal unit system through decimal partitioning of measuring unit. Secondly, the decimal fraction expansion will be initially introduced and the complete representation of decimal fraction according to positional notation will follow. Thirdly, such various interpretations of decimal fraction as 3.751m, 3m+7dm+5cm+1mm, $(3+\frac{7}{10}+\frac{5}{100}+\frac{1}{1000})m$ and $\frac{3751}{1000}m$ will be handled. Fourthly, decimal fraction will not be introduced with 'unit decimal fraction' such as 0.1, 0.01, 0.001, ${\cdots}$ but with 'natural number+decimal fraction' such as 2.345. Fifthly, we arranged a numeration activity ruled by random unit system previous to formal representation ruled by decimal positional notation. A experimental learning-teaching plan which presented in this thesis must be examined through teaching experiment. It is necessary to successive research for this task.
Journal of Elementary Mathematics Education in Korea
/
v.18
no.2
/
pp.237-255
/
2014
The purpose of this study is to investigate elementary school students' understanding the concept and operations of decimal fraction. The survey research was performed for this study. This survey was done by selecting 156 students. Questionnaire were made in five areas with reference to the 2007 revised mathematics curriculum. Five areas were the concept of decimal fraction, the addition, the subtraction, the multiplication and the division of decimal fraction. The results of such analysis are as follow: The analyzed result of understanding about concepts and operation of decimal fraction showed a high rate of correct answer, more than 85%. Students thought that multiplication and division of decimal fraction is more difficult than addition, subtraction, concept of decimal fraction. As the learning about concepts and operation of decimal fraction progress, the learning gap is bigger. Effort to reduce the learning deficits are needed in the lower grades. Mathematics is the study of the hierarchical. Learning deficits in low-level interfere with the learning in next-level. Therefore systematic supplementary guidance for a natural number and decimal fraction in low-level is needed. And understanding concepts and principles of calculations should be taught first.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.