• Title/Summary/Keyword: Debye

Search Result 161, Processing Time 0.021 seconds

Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length (전계효과 트랜지스터(FETs)를 이용한 전하 검출형 DNA 센서에서 Debye length에 따른 검출 감도)

  • Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.86-90
    • /
    • 2011
  • The effects of cations are very important in field-effect transistors (FETs) type DNA sensors detecting the intrinsic negative charge between single-stranded DNA and double-stranded DNA without labeling, because the intrinsic negative charge of DNA is neutralized by cations in electrolyte solution. We consider the Debye length, which depends on the concentration of cations in solution, to detect DNA hybridization based on the intrinsic negative charge of DNA. The Debye length is longer in buffer solution with a lower concentration of NaCl and the intrinsic negative charge of DNA is more effective on the channel surface in longer Debye length solution. The shifts in the gate voltage by DNA hybridization with complementary target DNA are 21 mV in 1 mM NaCl buffer solution, 7.2 mV in 10 mM NaCl buffer solution, and 5.1 mV in 100 mM NaCl buffer solution. The sensitivity of FETs to detect DNA hybridization based on charge detection without labeling depends on the Debye length.

Electromagnetic Analysis to Design Unclonable PUF Modeling (복제 방지용 PUF 모델링을 위한 전자계 해석)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1141-1147
    • /
    • 2012
  • Electromagnetic analysis to design unclonable PUFs with frequency-dependant materials with Debye dispersion was considered. To simulate FDTD calculations consider that 1-D problem of pulsed plane wave traveling in free space normally incident on air-silicon material interface on dielectric substrate. The pulse traveling wave at a vacuum-medium interface was reflected, and transmitted wave was dissipated. As a result, 1-D PUF modeling with Debye dispersion on dielectric substrate structure can be applied and FDTD calculation for PUF modeling is a good approximation.

Consideration of EM Analysis for Unclonnable PUF (복제 방지용 PUF의 전자계 해석 방안)

  • Kim, Tae-Yong;Lee, Hoon-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.80-82
    • /
    • 2012
  • In this paper, we present electromagnetic modeling to design unclonable PUFs with frequency-dependant materials corresponding to Debye dispersion. To demonstrate FDTD calculations consider that 1-D problem of pulsed plane wave traveling in free space normally incident on air-silicon material interface. The pulse traveling wave at a vacuum-medium interface were reflected, and transmitted wave were dissipated. As a result, 1-D PUF with Debye dispersion material structure can be applied and FDTD calculation for PUF modeling is a good approximation.

  • PDF

An Approach for Modeling of Sound Absorbing Material using Debye Polarization (Debye Polarization을 이용한 흡음재 모델링에 대한 연구)

  • Park, Kyu-Chil;Ito, Kazufumi;Yoon, Jong-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1391-1396
    • /
    • 2012
  • It is introduced an approach to model for numerical analysis of a sound absorbing material that has different absorbing coefficient according to frequency. For modeling of a sound absorbing material, we tried to model by a traditional modeling method. But it had large differences on frequency domain, especially a capacitance component due to increasing of frequency. We approach to model a sound absorbing material by the Debye polarization technique with non-linear least square method. At first, we estimated parameters form a polyurethane with thickness 25 mm, then we could model a polyurethane with thickness 50 mm using same parameters. Therefor, we could find that the Debye polarization is an useful way to model sound absorbing materials.

Analysis of In/Ga Inter-Diffusion Effect on the Thermodynamical Properties of InAs Quantum Dot

  • Abdellatif, M.H.;Song, Jin Dong;Lee, Donghan;Jang, Yudong
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.158-161
    • /
    • 2016
  • Debye temperature is an important thermodynamical factor in quantum dots (QDs); it can be used to determine the degree of homogeneity of a QD structure as well as to study the interdiffusion mechanism during growth. Direct estimation of the Debye temperature can be obtained using the Varshni relation. The Varshni relation is an empirical formula that can interpret the change of emission energy with temperature as a result of phonon interaction. On the other hand, phonons energy can be calculated using the Fan Expression. The Fan expression and Varshni relation are considered equivalent at a temperature higher than Debye temperature for InAs quantum dot. We investigated InAs quantum dot optically, the photoluminescence spectra and peak position dependency on temperature has been discussed. We applied a mathematical treatment using Fan expression, and the Varshni relation to obtain the Debye temperature and the phonon energy for InAs quantum dots sample. Debye temperature increase about double compared to bulk crystal. We concluded that the In/Ga interdiffusion during growth played a major role in altering the quantum dot thermodynamical parameters.

The mechanical and thermodynamic properties of α-Na3(U0.84(2),Na0.16(2))O4: A combined first-principles calculations and quasi-harmonic Debye model study

  • Chen, Haichuan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.611-617
    • /
    • 2021
  • The mechanical properties of α-Na3(U0.84(2),Na0.16(2))O4 have been researched using the first-principles calculations combined with the quasi-harmonic Debye model. The obtained lattice parameters agree well with the published experimental data. The results of elastic constants indicate that α-Na3(U0.84(2),Na0.16(2))O4 is mechanically stable. The polycrystalline moduli are predicted. The results show that the α-Na3(U0.84(2),Na0.16(2))O4 exhibits brittleness and possesses obvious elastic anisotropy. The hardness shows that it can be considered a "soft material". Furthermore, the Debye temperature θD and the minimum thermal conductivity kmin are also discussed, respectively. Finally, the thermal expansion coefficient α, isobaric heat capacity CP and isochoric heat capacity CV are evaluated through the quasi-harmonic Debye model.

Memory-Efficiently Modified JEC (FD)2TD Method for Debye Medium (Debye 매질에 대한 메모리 효율적인 JEC (FD)2TD 수치 해석 기법)

  • Kim Hyun;Hong Ik-Pyo;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.447-454
    • /
    • 2005
  • JEC method for Debye medium is required more memory resources and long calculation time than already well-known method such as RC method. It has been observed that JEC method would be converted to a memory effcient method by a change of discrete convolution integral range. The modified JEC method proposed here requires memory and calculation time similar to RC method, while it has a same or a smaller dispersion error than conventional methods, RC and JEC.

Calculation of the Activity Coefficients of Ions in Weak Electrolyte Solutions (묽은 전해질용액에서 이온의 활동도계수 계산)

  • Lee, Man-Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.9-13
    • /
    • 2018
  • The equilibrium constant of a chemical reaction is related to the standard Gibbs free energy change. Since equilibrium constant is defined as the ratio of the activities of the chemical species, it is necessary to consider the non-ideal behavior of the solutes as ionic strength of the solution increases. In this paper, the derivation of Debye-$H{\ddot{u}}ckel$ limiting law and its modification by which the activity coefficient of an ion can be calculated was explained. Moreover, the method to obtain the activity coefficient of an ion from the experimentally determined mean activity coefficients of an electrolyte was explained.

Debye Screening Effect on Scaling Behavior of Longest Relaxation Time of Biological Polyelectrolyte Chain

  • Lee, Jeong Yong;Sung, Jung Mun;Yoon, Kyu;Chun, Myung-Suk;Jung, Hyun Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3703-3708
    • /
    • 2013
  • The scaling relationship of the longest relaxation time of a single chain of semiflexible biological polyelectrolyte has been investigated by performing well-established coarse-grained Brownian dynamics simulations. Two kinds of longest relaxation times were estimated from time-sequences of chain trajectories, and their behaviors were interpreted by applying the scaling law for different molecular weights of polyelectrolyte and Debye lengths. The scaling exponents for longest stress relaxation and rotational relaxation are found in the ranges of 1.67-1.79 and 1.65-1.81, respectively, depending on the physicochemical interaction of electrostatic Debye screening. The scaling exponent increases with decreasing screening effect, which is a special feature of polyelectrolytes differing from neutral polymers. It revealed that the weak screening allows a polyelectrolyte chain to follow the behavior in good solvent due to the strong electrostatic repulsion between beads.

The Detection Method of a Target Position above a Ground Medium using the Buried Antenna (지하 매설 안테나를 이용한 지상 표적의 위치파악 기법)

  • 조정식;김채영;이승학;정종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.521-531
    • /
    • 2001
  • This paper presents the extraction scheme of the scattered waves by a target above the ground using the buried antenna in a lossy and dispersive medium. The half wave dipole antennas are used to transmit and to receive a signal. The transmission line model as a feeding model is considered to take into account the effect of transmission line in a real system. The ground is modeled by the 2nd order Debye approximation with the dispersion and loss. PLRC algorithm and DPML as absorbing boundary condition are utilized to apply the 2nd order Debye approximation to FDTD. To extract the scattered wave, in addition, we employed the delay time extraction algorithm. The simulations are conducted to observe the variation of magnitude in scattered wave and detection of target position according to the change of moisture content of the lossy medium.

  • PDF