Memory-Efficiently Modified JEC (FD)2TD Method for Debye Medium

Debye 매질에 대한 메모리 효율적인 JEC (FD)2TD 수치 해석 기법

  • Kim Hyun (Department of Electronical and Electronics Engineering, Yonsei University) ;
  • Hong Ik-Pyo (Department of Information and Communication Engineering, Kongju National University) ;
  • Yook Jong-Gwan (Department of Electronical and Electronics Engineering, Yonsei University)
  • 김현 (연세대학교 전기전자공학과) ;
  • 홍익표 (공주대학교 정보통신공학과) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Published : 2005.05.01

Abstract

JEC method for Debye medium is required more memory resources and long calculation time than already well-known method such as RC method. It has been observed that JEC method would be converted to a memory effcient method by a change of discrete convolution integral range. The modified JEC method proposed here requires memory and calculation time similar to RC method, while it has a same or a smaller dispersion error than conventional methods, RC and JEC.

Debye 매질에 대한 $(FD)^2TD$ 해석에 있어 JEC(JE Convolution) 기법은 기존의 기법들보다 적은 분산 오차를 가지지만 긴 계산 시간과 추가의 메모리를 필요로 하는 단점을 지닌다. 따라서 본 논문에서는 컨볼루션의 이산적분 구간을 변경해 줌으로써 유도되는 수정된 JEC 기법을 제안하였고 그 결과 기존의 RC(Recursive Convolution)나 JEC 기법보다 적은 분산 오차를 보이는 것을 확인할 수 있었다 또한 수정된 JEC 기법 이 기존 기법들 중 가장 간단한 RC 기법과 같은 계산 복잡도와 메모리량을 요구하면서도 그보다 적은 분산 오차를 보인다는 것을 확인하였다.

Keywords

References

  1. R. J. Luebbers, F. Hunsberger, and K. Kunz, 'A frequency-dependent finite difference time domain formulation for dispersive materials', IEEE Trans. on Electromagnetic Compatibility, vol. 32, pp. 222-227, 1990 https://doi.org/10.1109/15.57116
  2. J. L. Young, R. O. Nelson, 'A summary and systematic analysis of FDTD algorithms for linearly dispersive media', IEEE Antennas and Propagation Magazine, vol. 43, pp. 61-77, Feb. 2001 https://doi.org/10.1109/74.920019
  3. J. L. Young, A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, 'On the dispersion errors related to (FD)$^2$TI type schemes', IEEE Trans. on Microwave Theory and Tech., vol. 43, pp. 1902-1910, Aug. 1995 https://doi.org/10.1109/22.402280
  4. Q. Chen, M. Katsurai, and P. H. Aoyagi, 'An FDTD formulation for dispersive media using a current density', IEEE Trans. on Antennas and Propagation, vol. 46, pp. 1739-1745, 1998 https://doi.org/10.1109/8.736632
  5. K. K. Mei, J. Fang, 'Superabsorption - A method to improve absorbing boundary conditions', IEEE Trans. on Antennas and Propagation, vol. 40, pp. 1001-1010, Sep. 1992 https://doi.org/10.1109/8.166524
  6. D. F. Kelly, R. J. Luebbers, 'Piecewise linear recursive convolution for dispersive media using FDTD', IEEE Trans. on Antennas and Propagation, vol. 44, pp. 792-797, 1996 https://doi.org/10.1109/8.509882
  7. A. Taflove, S. C. Haness, Computational Electrodynamics- The Finite-Difference Time Domain Method, 2nd, A.H. Publishers