• Title/Summary/Keyword: Data interpretation, statistical

Search Result 174, Processing Time 0.028 seconds

Study on Earthquakes of Korea based on the Local Data of 1926~1943 (1926~1943년(年)의 국지자료(局地資料)에 의한 한국 지진(地震)의 연구(硏究))

  • Kim, Sang Jo
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.1-19
    • /
    • 1980
  • The local earthquake data, observed by Wiechert seismograph in Korea during Feb. 1926-May 1943, was provided and investigated. Using S-P monogram of JMA, mainly Tsuboi's formula and additional intensity data, the earthquake parameters are obtained as much as possible within a reasonable discrepancy. The seismic characteristics as to the epicenter distribution was discussed under the viewpoint of its relation to the adjacent geologic structure. Some statistical results are analyzed comparing with Kyushu region which provide a reasonable interpretation on the seismicity of Korea. By superposing the available information of the individual events, the general trend of stress field was found to be east-west compression, which mostly agree with that of the southwestern Japan.

  • PDF

The Abstraction of Forest Fire Damage Area using Factor Analysis from the Satellite Image Data (위성영상 자료에서 요인분석에 의한 산불 피해 지역 추출)

  • Choi, Seung-Pil;Lee, Suk-Kum;Kim, Dong-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.13-19
    • /
    • 2006
  • When investigating the damage of a forest fire, quite a few are depending on the naked eye observation. However, if the damage spreads to another area, it is easy to use the satellite images because it is hard to reach all the damaged areas on foot. From this research, we did a statistical interpretation of after fire using satellite image data to classify the damage on first and second factor analysis. As a result, it was more easier to classify the river's plants and ridges between rice fields that were in the forest fire damage area in the second observation then the first observation. Also, we could classify the area by areas that were damaged more or less using the second factor analysis. To verify this, we used the forest fire images collected from the satellite images and the actual survey data collected from spectral radiometer to see if these two datawere correlated and as a result we found out that they were highly involved.

  • PDF

Profiling Patterns of Volatile Organic Compounds in Intact, Senescent, and Litter Red Pine (Pinus densiflora Sieb. et Zucc.) Needles in Winter

  • CHOI, Won-Sil;YANG, Seung-Ok;LEE, Ji-Hyun;CHOI, Eun-Ji;KIM, Yun-Hee;YANG, Jiyoon;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.591-607
    • /
    • 2020
  • This study was aimed to investigate the changes of chemical composition of the volatile organic compounds (VOCs) emitted from red pine needles in the process of needle abscission or senescence. The VOCs in intact, senescent, and litter red pine needle samples were analyzed by headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS). And then, multivariate statistical interpretation of the processed data sets was conducted to investigate similarities and dissimilarities of the needle samples. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate the dataset structure and discrimination between samples, respectively. From the data preview, the levels of major components of VOCs from needles were not significantly different between needle samples. By PCA investigation, the data reduction according to classification based on the chlorophyll a / chlorophyll b (Ca/Cb) ratio were found to be ideal for differentiating intact, senescent, and litter needles. The following OPLS-DA taking Ca/Cb ratio as y-variables showed that needle samples were well grouped on score plot and had the significant discriminant compounds, respectively. Several compounds had significantly correlated with Ca/Cb ratio in a bivariate correlation analysis. Notably, the litter needles had a higher content of oxidized compounds than the intact needles. In summary, we found that chemical compositions of VOCs between intact, senescent, and litter needles are different each other and several compounds reflect characteristic of needle.

One-point versus two-point fixation in the management of zygoma complex fractures

  • Lee, Kyung Suk;Do, Gi Cheol;Shin, Jae Bong;Kim, Min Hyung;Kim, Jun Sik;Kim, Nam Gyun
    • Archives of Craniofacial Surgery
    • /
    • v.23 no.4
    • /
    • pp.171-177
    • /
    • 2022
  • Background: The treatment of zygoma complex fractures is of crucial importance in the field of plastic surgery. However, surgical methods to correct zygoma complex fractures, including the number of fixation sites, differ among operators. Although several studies have compared two-point and three-point fixation, no comparative research has yet been conducted on one-point versus two-point fixation using computed tomography scans of surgical results. Therefore, the present study aimed to address this gap in the literature by comparing surgical results between one-point and two-point fixation procedures. Methods: In this study, we randomly selected patients to undergo surgery using one of two surgical methods. We analyzed patients with unilateral zygoma complex fractures unaccompanied by other fractures according to whether they underwent one-point fixation of the zygomaticomaxillary buttress or two-point fixation of the zygomaticomaxillary buttress and the zygomaticofrontal suture. We then made measurements at three points-the zygomaticofrontal suture, inferior orbital wall, and malar height-using 3-month postoperative computed tomography images and performed statistical analyses to compare the results of the two methods. Results: All three measurements (zygomaticofrontal suture, inferior orbital wall, and malar height) showed significant differences (p< 0.05) between one-point and two-point fixation. Highly significant differences were found for the zygomaticofrontal suture and malar height parameters. The difference in the inferior wall measurements was less meaningful, even though it also reached statistical significance. Conclusion: Using three parameters in a statistical analysis of imaging findings, this study demonstrated significant differences in treatment outcomes according to the number of fixations. The results indicate that bone alignment and continuity can be achieved to a greater extent by two-point fixation instead of one-point fixation.

The Interpretation Of Chlorophyll a And Transparency In A Lake Using LANDSAT TM Imagery (LANDSAT TM 영상을 이용한 호소의 클로로필 a및 투명도 해석에 관한 연구)

  • 이건희;전형섭;김태근;조기성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.47-56
    • /
    • 1997
  • In this paper, remote sensing is used to estimate trophic state which is primary concern in a lake. In using remote sensing, this study estimated trophic state not with conventional method such as regression equations but with classification methods. As europhication is caused by the extraodinary proliferation of the algae, chlorophyll a and transparency are applied to remote sensing data.. Maximum Likelihood Classification and Minimum Distance Classification which are kinds of classification methods enabled trophic state to be confirmed in a lake. These are obtained as the result of applying remote sensing to classify trophic state in a lake. Firest, when we evaluate tropic state in a large area of water body, the application of remote sensing data can obtain more than 70% accuracies just in using basic classification methods. Second, in the aspect of classification, the accuracy of Minimum Distance Classification is usually better than that of Maximum Likelihood Classification. This result is caused that samples have normal distribution, but their numbers are a few to apply statistical method. Therefore, classification method is required such as artificial neural networks which are not influenced by statistical distribution. Third, this study enables the trophic state of water body to be analyzed and evaluated rapidly, periodically and visibly. Also, this study is good for forming proper countermeasure accompanying with trophic state progress extent in a lake and is useful for basic-data.

Design and Implementation of Electrocardiogram Data Interpretation system using AdaBoost Algorithm (AdaBoost 알고리즘을 이용한 심전도 정보 판독 시스템의 설계 및 구현)

  • Lim, Myung-Jae;Hong, Jin-Kyoung;Kim, Kyu-Ho;Choi, Mi-Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.129-134
    • /
    • 2010
  • Diseases such as cardiovascular illnesses, according to the National Statistical Office opened reveals that 600-800 people were killed, blood pressure, arteriosclerosis, heart disease, stroke, etc. will be a flow of blood disorders that occur in cardiovascular illnesses today are fulfilling the Master / Slave samangryulin disease appears high. Died of cardiovascular disease also told them the correct first aid survival when patients are accounted for approximately 40% of emergency rapid response is required. Therefore, this paper, the weak classifier in the AdaBoost algorithm to generate a strong classifier by combining effects throughout the analysis to measure the ECG, and cardiovascular disease that occurred to you as soon as the emergency management system that can deliver on the proposed Desk was. The electrocardiogram data measured by the ZigBee-based sensors, communication devices and emergency transport for emergency alarms in the determination and monitoring of the management desk by providing health services to enable the delivery was fast.

Tolerance Computation for Process Parameter Considering Loss Cost : In Case of the Larger is better Characteristics (손실 비용을 고려한 공정 파라미터 허용차 산출 : 망대 특성치의 경우)

  • Kim, Yong-Jun;Kim, Geun-Sik;Park, Hyung-Geun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.129-136
    • /
    • 2017
  • Among the information technology and automation that have rapidly developed in the manufacturing industries recently, tens of thousands of quality variables are estimated and categorized in database every day. The former existing statistical methods, or variable selection and interpretation by experts, place limits on proper judgment. Accordingly, various data mining methods, including decision tree analysis, have been developed in recent years. Cart and C5.0 are representative algorithms for decision tree analysis, but these algorithms have limits in defining the tolerance of continuous explanatory variables. Also, target variables are restricted by the information that indicates only the quality of the products like the rate of defective products. Therefore it is essential to develop an algorithm that improves upon Cart and C5.0 and allows access to new quality information such as loss cost. In this study, a new algorithm was developed not only to find the major variables which minimize the target variable, loss cost, but also to overcome the limits of Cart and C5.0. The new algorithm is one that defines tolerance of variables systematically by adopting 3 categories of the continuous explanatory variables. The characteristics of larger-the-better was presumed in the environment of programming R to compare the performance among the new algorithm and existing ones, and 10 simulations were performed with 1,000 data sets for each variable. The performance of the new algorithm was verified through a mean test of loss cost. As a result of the verification show, the new algorithm found that the tolerance of continuous explanatory variables lowered loss cost more than existing ones in the larger is better characteristics. In a conclusion, the new algorithm could be used to find the tolerance of continuous explanatory variables to minimize the loss in the process taking into account the loss cost of the products.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

Symbolic tree based model for HCC using SNP data (악성간암환자의 유전체자료 심볼릭 나무구조 모형연구)

  • Lee, Tae Rim
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1095-1106
    • /
    • 2014
  • Symbolic data analysis extends the data mining and exploratory data analysis to the knowledge mining, we can suggest the SDA tree model on clinical and genomic data with new knowledge mining SDA approach. Using SDA application for huge genomic SNP data, we can get the correlation the availability of understanding of hidden structure of HCC data could be proved. We can confirm validity of application of SDA to the tree structured progression model and to quantify the clinical lab data and SNP data for early diagnosis of HCC. Our proposed model constructs the representative model for HCC survival time and causal association with their SNP gene data. To fit the simple and easy interpretation tree structured survival model which could reduced from huge clinical and genomic data under the new statistical theory of knowledge mining with SDA.

Hierarchical Clustering Approach of Multisensor Data Fusion: Application of SAR and SPOT-7 Data on Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Gi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.65-65
    • /
    • 2002
  • In remote sensing, images are acquired over the same area by sensors of different spectral ranges (from the visible to the microwave) and/or with different number, position, and width of spectral bands. These images are generally partially redundant, as they represent the same scene, and partially complementary. For many applications of image classification, the information provided by a single sensor is often incomplete or imprecise resulting in misclassification. Fusion with redundant data can draw more consistent inferences for the interpretation of the scene, and can then improve classification accuracy. The common approach to the classification of multisensor data as a data fusion scheme at pixel level is to concatenate the data into one vector as if they were measurements from a single sensor. The multiband data acquired by a single multispectral sensor or by two or more different sensors are not completely independent, and a certain degree of informative overlap may exist between the observation spaces of the different bands. This dependence may make the data less informative and should be properly modeled in the analysis so that its effect can be eliminated. For modeling and eliminating the effect of such dependence, this study employs a strategy using self and conditional information variation measures. The self information variation reflects the self certainty of the individual bands, while the conditional information variation reflects the degree of dependence of the different bands. One data set might be very less reliable than others in the analysis and even exacerbate the classification results. The unreliable data set should be excluded in the analysis. To account for this, the self information variation is utilized to measure the degrees of reliability. The team of positively dependent bands can gather more information jointly than the team of independent ones. But, when bands are negatively dependent, the combined analysis of these bands may give worse information. Using the conditional information variation measure, the multiband data are split into two or more subsets according the dependence between the bands. Each subsets are classified separately, and a data fusion scheme at decision level is applied to integrate the individual classification results. In this study. a two-level algorithm using hierarchical clustering procedure is used for unsupervised image classification. Hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. In the first level, the image is partitioned as any number of regions which are sets of spatially contiguous pixels so that no union of adjacent regions is statistically uniform. The regions resulted from the low level are clustered into a parsimonious number of groups according to their statistical characteristics. The algorithm has been applied to satellite multispectral data and airbone SAR data.

  • PDF