Application of artificial intelligence (AI) approaches in eco-environmental modeling has gradually increased for the last decade. Comprehensive understanding and evaluation on the applicability of this approach to eco-environmental modeling are needed. In this study, we reviewed the previous studies that used AI-techniques in eco-environmental modeling. Decision Tree (DT) and Artificial Neural Network (ANN) were found to be major AI algorithms preferred by researchers in ecological and environmental modeling areas. When the effect of the size of training data on model prediction accuracy was explored using the data from the previous studies, the prediction accuracy and the size of training data showed nonlinear correlation, which was best-described by hyperbolic saturation function among the tested nonlinear functions including power and logarithmic functions. The hyperbolic saturation equations were proposed to be used as a guideline for optimizing the size of training data set, which is critically important in designing the field experiments required for training AI-based eco-environmental modeling.
본 연구는 한국의 인공지능 학습용 데이터 구축 사업과 데이터의 공공 개방에 관한 정책 수행 기관, 데이터 구축 기업, 그리고 이를 활용하는 다양한 기관의 데이터 품질에 대해 이해를 제고하고, 신뢰할 수 있는 인공지능 알고리즘 개발에 있어 가장 중요한 학습용 데이터 품질에 대한 이론적 토대를 만들기 위한 실증적 연구이다. 이를 위해, 데이터의 속성 요인, 데이터 구축환경 요인, 데이터 타입 관련 요인 등 인공지능 학습용 데이터 품질과 관련된 중요 선행요인을 도입하여 이론적 모형을 제안한다. 본 연구는 393명의 인공지능 학습용 데이터 구축 기업과 인공지능 서비스 개발 기업의 실무 담당자를 대상으로 설문조사를 실시하여 데이터를 수집하였다. 데이터 분석은 퍼지셋 질적비교분석 방법과 인공신경망 분석을 통해 이루어졌으며, 분석 결과를 통해 인공지능 학습용 데이터 관련 학술적 및 실무적 시사점을 도출했다.
본 연구는 최근 정부가 추진하는 마이데이터 기반 SW·AI 교육 훈련 플랫폼의 체계적 개발 및 활성화를 위한 주요 요소를 탐구하는 것을 목적으로 한다. 이를 위해 가치 기반 수용모델(Value-based Adoption Model, VAM)에 기반한 연구 모형을 설정하고 SW·AI 교육훈련 프로그램에 참여한 경험이 있는 178명을 대상으로 설문조사를 실시한 후, 확인적 요인분석 및 PLS-구조모형 분석을 사용하여 연구 모형을 검증하였다. 주요 연구 결과를 살펴보면 첫째, 투명성과 자기결정권이 지각된 혜택에 유의미한 영향을 미쳤으며, 기술적 노력과 보안성이 지각된 위협에 유의미한 영향을 미치는 것을 확인하였다. 둘째, 지각된 혜택은 플랫폼 사용 의도에 긍정적인 영향을 미쳤으나, 지각된 위협은 유의미한 영향을 미치지 않는 것으로 나타났다. 본 연구는 이러한 결과를 토대로 SW·AI 교육 훈련 분야에서 마이데이터 기반 플랫폼의 체계적 개발 및 활성화를 위한 시사점을 제안하였다.
본 논문은 인공지능(AI)을 활용하여 장애인 직업 훈련 평가 데이터를 분석하고, 다양한 머신러닝 알고리즘을 통해 최적의 예측 모델을 선정하는 연구를 수행한다. 훈련생의 성별, 나이, 학력, 장애 유형, 기초 학습 능력 등의 데이터를 분석하여 취업 가능성이 높은 직종을 예측하고, 이를 바탕으로 맞춤형 훈련 프로그램을 설계하여 훈련 효율성과 취업 성공률을 높이는 것을 목표로 한다.
본 연구의 목적은 랜드마크 이미지의 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안을 제시하기 위함이다. 이를 위해, 이미지 검색시스템의 종류와 각각의 색인 방식에 관한 최신 기술 현황을 포괄적으로 조사하여 분석하고, AI 머신러닝을 적용한 랜드마크 인식에 필수적인 학습용 공개 데이터셋과 이미지 객체 인식에 관한 기계학습 도구를 조사하였다. 이를 통해, 랜드마크 이미지 AI 학습용 데이터에 최적화된 메타데이터 요소를 선정하고 각각의 요소에 대한 입력 데이터를 정의하였다. 결론 및 제언에서는 랜드마크 인식을 활용한 추천시스템을 포함한 응용서비스 개발 방안을 논의하였다.
본 연구는 과학기술정보통신부가 2017년부터 1조원 이상을 투자한 'AI Hub 댐' 사업에서 구축된 인공지능 모델 학습데이터의 품질관리를 자동화할 수 있는 프레임워크의 개발을 목표로 한다. 자율주행 개발에 사용되는 AI 모델 학습에는 다량의 고품질의 데이터가 필요하며, 가공된 데이터를 검수자가 데이터 자체의 이상을 검수하고 유효함을 증명하는 데는 여전히 어려움이 있으며 오류가 있는 데이터로 학습된 모델은 실제 상황에서 큰 문제를 야기할 수 있다. 본 논문에서는 이상 데이터를 제거하는 신뢰할 수 있는 데이터셋 정제 프레임워크를 통해 모델의 인식 성능을 향상시키는 전략을 소개한다. 제안하는 방법은 인공지능 학습용 데이터 품질관리 가이드라인의 지표를 기반으로 설계되었다. 한국정보화진흥원의 AI Hub을 통해 공개된 자율주행 데이터셋에 대한 실험을 통해 프레임워크의 유효성을 증명하였고, 이상 데이터가 제거된 신뢰할 수 있는 데이터셋으로 재구축될 수 있음을 확인하였다.
A vast amount of labeled data is required for deep neural network training. A typical strategy to improve the performance of a neural network given a training data set is to use data augmentation technique. The goal of this work is to offer a novel image augmentation method for improving object detection accuracy. An object in an image is removed, and a similar object from the training data set is placed in its area. An in-painting algorithm fills the space that is eliminated but not filled by a similar object. Our technique shows at most 2.32 percent improvements on mAP in our testing on a military vehicle dataset using the YOLOv4 object detector.
The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.
The big data industry market continues to grow and is expected to grow further. In this paper, based on the five-point Likert scale of college students in the process of developing big data young people, the satisfaction of instructors in big data training and improvement of job (education) ability based on AI convergence The survey was conducted on the expectations of the participants and their intention to participate in the training process for the young talents. Male students were more satisfied than students. In terms of students, students who are less than 6th semester have the highest satisfaction, but students who are less than 7th and 8th semesters are less satisfied. By department, the satisfaction level of science and statistics students was the highest, while the satisfaction level of other students was low. According to the average of college credits, the satisfaction of students under 3.5~4.0 was the highest, and the satisfaction of students below 3.0 was the lowest.
본 연구에서는 차기 개정교육과정의 개정을 앞두고 인공지능교육의 효과성을 높이기 위한 AI리터러시 교육의 필요성을 살펴보고자 하였다. 이를 위해 고등학생을 대상으로 인공지능 모델링 수업을 실시하고 인공지능교육에서 학생들이 인식하는 AI리터러시에 대한 필요성과 내용 및 교육시기 등을 설문을 통해 살펴보았다. 인공지능수업에서 데이터 활용 및 데이터 전처리의 필요성에 대해서는 대체로 동의하는 결과가 나타났으며, 인공지능 수업을 진행하는 과정에서 데이터베이스 활용에 대한 기초역량이 부족하여 어려움을 겪는 경우가 많았다. 특히, 데이터 분석을 위한 파일의 구조에 대한 이해가 부족하였으며 데이터분석을 위한 데이터저장의 형태에 대한 이해도가 낮은 것으로 관찰되었다. 이러한 부분을 극복하기 위하여 데이터처리를 위한 사전교육의 필요성을 인식하였고, 그 시기로는 대체적으로 고등학교 진학 이전이 적절하다는 의견이 많았다. AI리터러시의 내용요소에 대해서는 데이터 생성 및 삭제를 비롯하여 데이터 변형과 함께 데이터 시각화의 내용에 대한 요구가 높았음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.