• Title/Summary/Keyword: Data Collection and Preprocessing

Search Result 59, Processing Time 0.024 seconds

Flow visualization of PM preprocessing system using the small scale gascyclone precipitator (소형 가스사이클론 집진장치를 이용한 PM 전처리 시스템의 유동 가시화)

  • YANG, Yongsu;LEE, Kyounghoon;JO, Hyeonjeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.3
    • /
    • pp.263-270
    • /
    • 2016
  • This study is aimed to design the mechanical gascyclone precipitator with an outstanding collection efficiency as one of ways to reduce exhaust gas of small-scale vessels. It estimated fine particles generated from diesel engines which has become one of the biggest environmental issues currently. Specifically, it quantitatively analyzed the flowing process from the cyclone gas exit; a duct via part to the collecting part of Cylindrical lower using DPIV (Digital Particle Image Velocimetry). Since the gas inlet height part became wider the previous theoretical dimensions, internal fluid characteristics of cyclone where the speed of internal swirl had been slow were investigated by temporary streamline of fine particles at $14-20{\mu}m$. The results showed that collecting efficiency was three times higher than the conical type utilized previously. In addition, this study supplemented imprecision problems from the previous theoretical equation and CFD interpretation with an experimental method. It also provided a basic data to design the cyclone precipitator by size of diesel engines for vessels.

Face Morphing Using Generative Adversarial Networks (Generative Adversarial Networks를 이용한 Face Morphing 기법 연구)

  • Han, Yoon;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.435-443
    • /
    • 2018
  • Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 2014, showed that the problem of computer vision can be sufficiently solved in unsupervised learning, and the generation domain can also be studied using learned generators. GAN is being developed in various forms in combination with various models. Machine learning has difficulty in collecting data. If it is too large, it is difficult to refine the effective data set by removing the noise. If it is too small, the small difference becomes too big noise, and learning is not easy. In this paper, we apply a deep CNN model for extracting facial region in image frame to GAN model as a preprocessing filter, and propose a method to produce composite images of various facial expressions by stably learning with limited collection data of two persons.

A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI) (인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구)

  • KyungHyun Lee;RackJune Baek;WooSu Kim;HeeJeong Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.403-409
    • /
    • 2024
  • In this paper, the guidelines for the design of an Artificial Intelligence(AI) based Integrated Process Safety Management(PSM) system to enhance workplace safety using data from process safety reports submitted by hazardous and risky facility operators in accordance with the Occupational Safety and Health Act is proposed. The system composed of the proposed guidelines is to be implemented separately by individual facility operators and specialized process safety management agencies for single or multiple workplaces. It is structured with key components and stages, including data collection and preprocessing, expansion and segmentation, labeling, and the construction of training datasets. It enables the collection of process operation data and change approval data from various processes, allowing potential fault prediction and maintenance planning through the analysis of all data generated in workplace operations, thereby supporting decision-making during process operation. Moreover, it offers utility and effectiveness in time and cost savings, detection and prediction of various risk factors, including human errors, and continuous model improvement through the use of accurate and reliable training data and specialized datasets. Through this approach, it becomes possible to enhance workplace safety and prevent accidents.

Frequent Pattern Bayesian Classification for ECG Pattern Diagnosis (심전도 패턴 판별을 위한 빈발 패턴 베이지안 분류)

  • Noh, Gi-Yeong;Kim, Wuon-Shik;Lee, Hun-Gyu;Lee, Sang-Tae;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1031-1040
    • /
    • 2004
  • Electrocardiogram being the recording of the heart's electrical activity provides valuable clinical information about heart's status. Many re-searches have been pursued for heart disease diagnosis using ECG so far. However, electrocardio-graph uses foreign diagnosis algorithm due to inaccuracy of diagnosis results for a heart disease. This paper suggests ECG data collection, data preprocessing and heart disease pattern classification using data mining. This classification technique is the FB(Frequent pattern Bayesian) classifier and is a combination of two data mining problems, naive bayesian and frequent pattern mining. FB uses Product Approximation construction that uses the discovered frequent patterns. Therefore, this method overcomes weakness of naive bayesian which makes the assumption of class conditional independence.

A Convex Layer Tree for the Ray-Shooting Problem (광선 슈팅 문제를 위한 볼록 레이어 트리)

  • Kim, Soo-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.753-758
    • /
    • 2017
  • The ray-shooting problem is to find the first intersection point on the surface of given geometric objects where a ray moving along a straight line hits. Since rays are usually given in the form of queries, this problem is typically solved as follows. First, a data structure for a collection of objects is constructed as preprocessing. Then, the answer for each query ray is quickly computed using the data structure. In this paper, we consider the ray-shooting problem about the set of vertical line segments on the x-axis. We present a new data structure called a convex layer tree for n vertical line segments given by input. This is a tree structure consisting of layers of convex hulls of vertical line segments. It can be constructed in O(n log n) time and O(n) space and is easy to implement. We also present an algorithm to solve each query in O(log n) time using this data structure.

The Study on the patient safety culture convergence research topics through text mining and CONCOR analysis (텍스트마이닝 및 CONCOR 분석을 활용한 환자안전문화 융복합 연구주제 분석)

  • Baek, Su Mi;Moon, Inn Oh
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.359-367
    • /
    • 2021
  • The purpose of this study is to analyze domestic patient safety culture research topics using text mining and CONCOR analysis. The research method was conducted in the stages of data collection, data preprocessing, text mining and social network analysis, and CONCOR analysis. A total of 136 articles were analyzed excluding papers that were not published. Data analysis was performed using Textom and UCINET programs. As a result of this study, TF (frequency) of patient safety culture-related studies showed that patient safety was the highest, and TF-IDF (importance in documents) was highest in nursing. As a result of the CONCOR analysis, a total of seven clusters were derived: knowledge and attitude, communication, medical service, team, work environment, structure, organization and management that constitute the patient safety culture. In the future, it is necessary to conduct research on the relationship between the establishment of a patient safety culture and patient outcomes.

A Study on the Construction of Financial-Specific Language Model Applicable to the Financial Institutions (금융권에 적용 가능한 금융특화언어모델 구축방안에 관한 연구)

  • Jae Kwon Bae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.3
    • /
    • pp.79-87
    • /
    • 2024
  • Recently, the importance of pre-trained language models (PLM) has been emphasized for natural language processing (NLP) such as text classification, sentiment analysis, and question answering. Korean PLM shows high performance in NLP in general-purpose domains, but is weak in domains such as finance, medicine, and law. The main goal of this study is to propose a language model learning process and method to build a financial-specific language model that shows good performance not only in the financial domain but also in general-purpose domains. The five steps of the financial-specific language model are (1) financial data collection and preprocessing, (2) selection of model architecture such as PLM or foundation model, (3) domain data learning and instruction tuning, (4) model verification and evaluation, and (5) model deployment and utilization. Through this, a method for constructing pre-learning data that takes advantage of the characteristics of the financial domain and an efficient LLM training method, adaptive learning and instruction tuning techniques, were presented.

IIoT processing analysis model for improving efficiency and processing time through characteristic analysis by production product (생산제품별 특성 분석을 통한 효율성 및 처리시간 향상을 위한 IIoT 처리 분석 모델)

  • Jeong, Yoon-Su;Kim, Yong-Tae
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.397-404
    • /
    • 2022
  • Recently, in the industrial field, various studies are being conducted on converging IIoT devices that combine low-power processes and network cards into industrial sites to improve production efficiency and reduce costs. In this paper, we propose a processing model that can efficiently manage products produced by attaching IIoT sensor information to infrastructure built in industrial sites. The proposed model creates production data using IIoT data collection, preprocessing, characteristic generation, and labels to detect abnormally processed sensing information in real time by checking sensing information of products produced by IIoT at regular intervals. In particular, the proposed model can easily process IIoT data by performing tracking and monitoring so that product information produced in industrial sites can be processed in real time. In addition, since the proposed model is operated based on the existing production environment, the connection with the existing system is smooth.

A Study for Real-time Data Collection and Application of DTW for Evaluation Ship Stability (선박 복원 성능 평가를 위한 실시간 데이터 수집 및 DTW 적용에 대한 연구)

  • Jeong-Hun Woo;Ho-June Seok;Seung Sim;Jun-Rae Cho;Deuk-Jae Cho;Jong-Hwa Baek;Jaeyong Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.206-207
    • /
    • 2023
  • Intelligent maritime traffic information services provide services for maritime traffic safety, but due to the difference in ship specifications and loading condition, the method of determining abnormalities in ship stability has not been generalized. In this study, we established a method for collecting and preprocessing Accelerometer and GPS data for calculating ship stability. In addition, we have researched a model that can determine the real-time ship stability through data science algorithms that can reflect each vessel specifications and external forces, breaking away from approximate calculations that cannot reflect weather factors in the real ocean.

  • PDF

Structural Topic Modeling Analysis of Patient Safety Interest among Health Consumers in Social Media (소셜미디어 내 의료소비자의 환자안전 관심에 대한 구조적 토픽 모델링 분석)

  • Kim, Nari;Lee, Nam-Ju
    • Journal of Korean Academy of Nursing
    • /
    • v.54 no.2
    • /
    • pp.266-278
    • /
    • 2024
  • Purpose: This study aimed to investigate healthcare consumers' interest in patient safety on social media using structural topic modeling (STM) and to identify changes in interest over time. Methods: Analyzing 105,727 posts from Naver news comments, blogs, internet cafés, and Twitter between 2010 and 2022, this study deployed a Python script for data collection and preprocessing. STM analysis was conducted using R, with the documents' publication years serving as metadata to trace the evolution of discussions on patient safety. Results: The analysis identified a total of 13 distinct topics, organized into three primary communities: (1) "Demand for systemic improvement of medical accidents," underscoring the need for legal and regulatory reform to enhance accountability; (2) "Efforts of the government and organizations for safety management," highlighting proactive risk mitigation strategies; and (3) "Medical accidents exposed in the media," reflecting widespread concerns over medical negligence and its repercussions. These findings indicate pervasive concerns regarding medical accountability and transparency among healthcare consumers. Conclusion: The findings emphasize the importance of transparent healthcare policies and practices that openly address patient safety incidents. There is clear advocacy for policy reforms aimed at increasing the accountability and transparency of healthcare providers. Moreover, this study highlights the significance of educational and engagement initiatives involving healthcare consumers in fostering a culture of patient safety. Integrating consumer perspectives into patient safety strategies is crucial for developing a robust safety culture in healthcare.