• Title/Summary/Keyword: Data Carrier

Search Result 898, Processing Time 0.026 seconds

Second-Moment Closure Modelling of Particle-Laden Homogeneous Turbulent Shear Flows (고체입자가 부상된 균질 난류 전단유동의 2차-모멘트 모형화)

  • Shin, Jong-Keun;Seo, Jeong-Sik;Han, Seong-Ho;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.29-39
    • /
    • 2007
  • A second-moment closure is applied to the prediction of a homogeneous turbulent shear flow laden with mono-size particles. The closure is curried out based on a 'two-fluid' methodology in which both carrier and dispersed phases are considered in the Eulerian frame. To reduce the number of coupled differential equations to be solved, Reynolds stress transport equations and algebraic stress models are judiciously combined to obtain the Reynolds stress of carrier and dispersed phases in the mean momentum equation. That is, the Reynolds stress components for carrier and dispersed phases are solved by modelled transport equations, but the fluid-particle velocity covariance tensors are treated by the algebraic models. The present predictions for all the components of Reynolds stresses are compared to the DNS data. Reasonable agreements are observed in all the components, and the effects of the coupling of carrier and dispersed phases are properly captured in every aspects.

Accurate RF Extraction Method for Gate Voltage-Dependent Carrier Velocity of Sub-0.1㎛ MOSFETs in the Saturation Region (Sub-0.1㎛ MOSFET의 게이트전압 종속 캐리어 속도를 위한 정확한 RF 추출 방법)

  • Lee, Seonghearn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.55-59
    • /
    • 2013
  • A new method using RF Ids determined from measured S-parameters is proposed to extract the gate-voltage dependent effective carrier velocity of bulk MOSFETs in the saturation region without additional dc Ids measurement data suffering parasitic resistance effect that becomes larger with continuous down-scaling to sub-$0.1{\mu}m$. This method also allows us to extract the carrier velocity in the saturation region without the difficult extraction of bias-dependent parasitic gate-source capacitance and effective channel length. Using the RF technique, the electron velocity overshoot exceeding the bulk saturation velocity is observed in bulk N-MOSFETs with a polysilicon gate length of $0.065{\mu}m$.

Precise attitude determination using GPS carrier phase measurements (GPS 반송파 위상을 이용한 정밀 자세 측정)

  • Park, Chan-Sik;Lee, Jang-Gyu;Jee, Gyu-In;Lee, Young-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.602-612
    • /
    • 1997
  • With GPS carrier phase measurements from more than two antenna which attached to the vehicle, precise attitude can be easily obtained if the integer ambiguity included in carrier phase measurement is resolved. Recently some special products which use dual frequencies or has one receiver engine with multiple antenna are announced. But there are still strong requirements for the conventional single frequency off-the-shelf receiver. To meet these requirements, an efficient integer ambiguity resolution technique is indispensable. In this paper, a new technique to resolve integer imbiguity with single frequency receivers is proposed. The proposed method utilize the known baseline length as a constraint of independent elements of integer ambiguities. With this constraints, the size of search volume can be greatly reduced. Thus the true integer ambiguity can be easily determined with less computational burden and number of measurements. The proposed method is applied to real data to show its effectiveness.

  • PDF

Direct Measurement of Diffusion Length in Mixed Lead-halide Perovskite Films Using Scanning Photocurrent Microscopy

  • Kim, Ahram;Son, Byung Hee;Kim, Hwan Sik;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • Carrier diffusion length in the light-sensitive material is one of the key elements in improving the light-current conversion efficiency of solar-cell devices. In this paper, we measured the carrier diffusion length in lead-halide perovskite ($MAPbI_3$) and mixed lead-halide ($MAPbI_{3-x}Cl_x$) perovskite devices using scanning photocurrent microscopy (SPCM). The SPCM signal decreased as we moved the focused laser spot away from the metal contact. By fitting the data with a simple exponential curve, we extracted the carrier diffusion length of each perovskite film. Importantly, the diffusion length of the mixed-halide perovskite was higher than that of the halide perovskite film by a factor of 3 to 6; this is consistent with the general expectation that the carrier mobility will be higher in the case of the mixed lead-halide perovskites. Finally, the diffusion length was investigated as a function of applied bias for both samples, and analyzed successfully in terms of the drift-diffusion model.

Improved GPS-based Satellite Relative Navigation Using Femtosecond Laser Relative Distance Measurements

  • Oh, Hyungjik;Park, Han-Earl;Lee, Kwangwon;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS) based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI) algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.

A STUDY ON THE IMPROVEMENT OF NEAR-REAL TIME GPS PHASE DATA PROCESSING ALGORITHM (준실시각 GPS 위상자료 처리 알고리즘 성능 개선에 관한 연구)

  • 손동효;조정호;박종욱;임형철;박필호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.129-140
    • /
    • 2004
  • KAO(Korea Astronomy Observatory) GPS group has developed an iRTK system as a near-real time positioning system using GPS carrier phase data. We focused on improving the accuracy of positioning through the updated capability of data processing of KAO's iRTK system using low-cost L1 carrier phase receiver. The accuracy of a positioning was demonstrated by Extended Kalman filter. Experiments were accomplished using from 30m to 20km baselines. Within 10km, the positioning accuracy was improved by approximately 50-70% to the previous study using one minute observable data. However, it took two minutes to obtain 1m level positioning accuracy at 20km point. We expect that the developed iRTK system can be applied to the various fields of GPS in near-real time positioning.

Random Sign Reversal Technique in Space Frequency Block Code for Single Carrier Modulation (단일 반송파 변조를 위한 공간 주파수 블록 코드의 난수 부호 반전 기법)

  • Jung, Hyeok-Koo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.25-36
    • /
    • 2022
  • This paper proposes a random sign reversal technique in space frequency block code for single carrier modulation. The traditional space time and frequency block coding technique may be confronted with radio environments openly, severe radio hijacking problems are to be overcome. In order to avoid such an open radio issue, random coded data protection technique for space-time block code was proposed, but this algorithm can change channel combination per an Orthogonal Frequency Division Multiplexing block. This kind of slow switching increases the probability that nearby receivers will detect the transmitted data. This paper proposes a fast switching algorithm per data symbols' basis which is a random sign reversal technique in space frequency block code for Single Carrier Modulation. It is shown in simulation that the proposed one has a superior performance in comparison with the performance of the receiver which do not know the random timing sequence of sign reversal.

FPGA Based PWM Generator for Three-phase Multilevel Inverter

  • Tran, Q.V.;Chun, T.W.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.225-227
    • /
    • 2008
  • This paper deals with the implementation on a Field Programmable Gate Array (FPGA) of PWM switching patterns for a voltage multilevel inverter. The reference data in main microcontroller is transmitted to the FPGA through 16 general purpose I/O ports. Herein, three-phase reference voltage signals are addressed by the last 2-bit (bit 15-14) and their data are assigned in remaining 14-bit, respectively. The carrier signals are created by 16-bit counter in up-down counting mode inside FPGA according to desirable topology. Each reference signal is compared with all carrier signals to generate corresponding PWM switching patterns for control of the multilevel inverter. Useful advantages of this scheme are easy implementation, simple software control and flexibility in adaptation to produce many PWM signals. Some simulations and experiments are carried out to validate the proposed method.

  • PDF

Modeling of Anode Voltage Drop for PT-IGBT at Turn-off (턴-오프 시 PT-IGBT의 애노드 전압 강하 모델링)

  • Ryu, Se-Hwan;Lee, Ho-Kil;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper, transient characteristics of the Punch Through Insulated Gate Bipolar Transistor (PT-IGBT) have been studied. On the contrary to Non-Punch Through Insulated Gate Bipolar Transistor(NPT-IGBT), it has a buffer layer and reduces switching power loss. It has a simple drive circuit controlled by the gate voltage of the MOSFET and low on-state resistance of the bipolar junction transistor. The transient characteristics of the PT-IGBT have been analyzed analytically. Excess minority carrier and charge distribution in active base region, the rate of anode voltage with time are expressed analytically by adding the influence of buffer layer. The experimental data is obtained from manufacturer. The theoretical predictions of the analysis have been compared with the experimental data obtained from the measurement of a device(600 V, 15 A) and show good agreement.