FIG. 1. (a) Schematic diagram of a perovskite device with drain and source electrodes embedded in a quartz substrate. For the diffusion-length measurement, we used a SPCM technique with a focused 532-nm laser. SEM images of (b) lead-halide and (c) mixed lead-halide perovskite films respectively.
FIG. 2. (a) ISPCM image of lead-halide perovskite film with a channel length of 30 μm. (b) Line profile of ISPCM as a function of position along the channel, extracted from (a).
FIG. 3. (a) Two-dimensional plot of ISPCM as a function of position (x-axis) and VDS (y-axis) for a MAPbI3-xClx device with channel length of 20 μm. (b) Line profiles of ISPCM as a function of position, extracted from (a) for different values of VDS.
FIG. 4. (a) Semilogarithmic plots of ISPCM as a function of position for different values of VDS. (b) Diffusion length as a function of VDS, for both MAPbI3-xClx (filled boxes) and MAPbI3 (open circles) devices with channel length of 20 μm. Solid lines are fits to the data based on the drift-diffusion model.
References
- L. M. Herz, "Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits," ACS Energy Lett. 2, 1539-1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
- S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science 342, 341-344 (2013). https://doi.org/10.1126/science.1243982
-
Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, "Electron-hole diffusion lengths >175
${\mu}$ m in solution-grown$CH_3NH_3PbI_3$ single crystals," Science 347, 967-970 (2015). https://doi.org/10.1126/science.aaa5760 - H. J. Snaith, "Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells," J. Phys. Chem. Lett. 4, 3623-3630 (2013). https://doi.org/10.1021/jz4020162
- M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nat. Photon. 8, 506-514 (2014). https://doi.org/10.1038/nphoton.2014.134
- C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, "High charge carrier mobilities and lifetimes in organolead trihalide perovskites," Adv. Mater. 26, 1584-1589 (2014). https://doi.org/10.1002/adma.201305172
- Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbiumdoped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004). https://doi.org/10.1049/el:20040298
- Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbiumdoped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004). https://doi.org/10.1364/OPEX.12.006088
- U. Keller, "Recent developments in compact ultrafast lasers," Nature 424, 831-838 (2003). https://doi.org/10.1038/nature01938
- W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang, and A. D. Mohite, "High-efficiency solution-processed perovskite solar cells with millimeter-scale grains," Science 347, 522-525 (2015). https://doi.org/10.1126/science.aaa0472
- G. Hodes and P. V. Kamat, "Understanding the implication of carrier diffusion length in photovoltaic cells," J. Phys. Chem. Lett. 6, 4090-4092 (2015). https://doi.org/10.1021/acs.jpclett.5b02052
- Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, "Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications," J. Am. Chem. Soc. 136, 11610-11613 (2014). https://doi.org/10.1021/ja506624n
- V. D'Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini, and A. Petrozza, "Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite," J. Am. Chem. Soc. 136, 17730-17733 (2014). https://doi.org/10.1021/ja511198f
- S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, "Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states," Phys. Rev. Appl. 2, 034007 (2014). https://doi.org/10.1103/PhysRevApplied.2.034007
- E. Alarousu, A. M. El-Zohry, J. Yin, A. A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. Alsaggaf, A. V. Malko, O. M. Bakr, and O. F. Mohammed, "Ultralong radiative states in hybrid perovskite crystals: compositions for submillimeter diffusion lengths," J. Phys. Chem. Lett. 8, 4386-4390 (2017). https://doi.org/10.1021/acs.jpclett.7b01922
- W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin, "Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates," J. Am. Chem. Soc. 137, 12458-12461 (2015). https://doi.org/10.1021/jacs.5b08045
- J. K. Park, J. C. Kang, S. Y. Kim, B. H. Son, J. Y. Park, S. Lee, and Y. H. Ahn, "Diffusion length in nanoporous photoelectrodes of dye-sensitized solar cells under operating conditions measured by photocurrent microscopy," J. Phys. Chem. Lett. 3, 3632-3638 (2012). https://doi.org/10.1021/jz301751j
-
J. D. Park, B. H. Son, J. K. Park, S. Y. Kim, J. Y. Park, S. Lee, and Y. H. Ahn, "Diffusion length in nanoporous
$TiO_2$ films under above-band-gap illumination," AIP Adv. 4, 067106 (2014). https://doi.org/10.1063/1.4881875 - S. Liu, L. Wang, W. C. Lin, S. Sucharitakul, C. Burda, and X. P. A. Gao, "Imaging the long transport lengths of photo-generated carriers in oriented perovskite films," Nano Lett. 16, 7925-7929 (2016). https://doi.org/10.1021/acs.nanolett.6b04235
- N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells," Nat. Mater. 13, 897-903 (2014). https://doi.org/10.1038/nmat4014
- J. K. Park, B. H. Son, J. Y. Park, S. Lee, and Y. H. Ahn, "High-speed scanning photocurrent imaging techniques on nanoscale devices," Curr. Appl. Phys. 13, 2076-2081 (2013). https://doi.org/10.1016/j.cap.2013.08.019
- J. H. Yoon, H. J. Jung, J. T. Hong, J. Y. Park, S. Lee, S. W. Lee, and Y. H. Ahn, "Electronic band alignment at complex oxide interfaces measured by scanning photocurrent microscopy," Sci. Rep. 7, 3824 (2017). https://doi.org/10.1038/s41598-017-04265-9
- J. Park, Y. H. Ahn, and C. Ruiz-Vargas, "Imaging of photocurrent generation and collection in single-layer graphene," Nano Lett. 9, 1742-1746 (2009). https://doi.org/10.1021/nl8029493
- B. H. Son, J. K. Park, J. T. Hong, J. Y. Park, S. Lee, and Y. H. Ahn, "Imaging ultrafast carrier transport in nanoscale field-effect transistors," ACS Nano 8, 11361-11368 (2014). https://doi.org/10.1021/nn5042619
-
Y. C. Kim, V. T. Nguyen, S. Lee, J. Y. Park, and Y. H. Ahn, "Evaluation of transport parameters in
$MoS_2$ /graphene junction devices fabricated by chemical vapor deposition," ACS Appl. Mater. Interfaces 10, 5771-5778 (2018). https://doi.org/10.1021/acsami.7b16177 - Y. H. Ahn, A. W. Tsen, B. Kim, Y. W. Park, and J. Park, "Photocurrent imaging of p-n junctions in ambipolar carbon nanotube transistors," Nano Lett. 7, 3320-3323 (2007). https://doi.org/10.1021/nl071536m
-
Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao, and Q. Gong, "Direct observation of long electron-hole diffusion distance in
$CH_3NH_3PbI_3$ perovskite thin film," Sci. Rep. 5, 14485 (2015). https://doi.org/10.1038/srep14485