• Title/Summary/Keyword: DOE(Design of Experiment)

Search Result 299, Processing Time 0.033 seconds

Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor Using a Design of Experiment and Kriging Model (크리깅 기법을 이용한 휠인 영구자석 동기전동기의 최적 설계)

  • Jang, Eun-Young;Hwang, Kyu-Yun;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.852-853
    • /
    • 2008
  • This paper proposes an optimal design method for the shape optimization of the permanent magnets (PM) of an in-wheel permanent magnet synchronous motor (PMSM) to reduce the cogging torque considering a total harmonic distortion (THD) and a root mean square (RMS) value of back-EMF. In this method, the Kriging model based on a design of experiment (DOE) is applied to interpolate the objective function in the spaces of design parameters. The optimal design method for the PM of an in-wheel PMSM has to consider multi-variable and multi-objective functions. The developed design method is applied to the optimization for the PM of an in-wheel PMSM.

  • PDF

Optimal Design of Micro Actuator Plate Spring Considering Vibration Characteristic (진동 특성을 고려한 마이크로 엑추에이터 판 스프링의 최적설계)

  • 이종진;이호철;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.220-225
    • /
    • 2003
  • Recent issue of optical actuator is applying to mobile device. It leads actuator to become smaller than conventional type. This paper proposes the design of micro actuator plate spring and analysis of its vibration characteristic. Considering natural frequency of spindle motor, 1st and 2nd eigenfrequency of micro actuator must avoid its natural frequency. First, magnetic circuit is designed by using fine pattern coil and magnetic force is acquired by simulation program. Then, concept design is achieved by topology optimization. From concept design, micro actuator plate spring is embodied through DOE(design of experiment). Finally, considering vibration characteristic simultaneously, optimal plate spring design is determined by RSM(response surface method).

  • PDF

A Study on the Reduction of Unclamping Time by Design of Experiments (실험계획법을 이용한 초고속 스핀들의 언클램핑 (unclamping) 시간 저감에 대한 최적 조건에 관한 연구)

  • Chung, Won-Jee;Cho, Young-Duk;Lee, Choon-Man;Jung, Dong-Won;Song, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • By the reason of increased demand of high productivity, the researches on manufacturing process and equipments for reducing cycle time have been made in many directions of a machine tool industries. Especially high productivity is very important to machining center with high-speed spindle. This paper proposed method of reducing T-T(tool to tool) time which results in shorter unclamping time. T-T time varies as factors such as a hydraulic system, a drawbar mass, a flow meter, a disc spring, piston and pipe diameters. In this paper We could find design factors has much influence on decreasing the unclamping time using DOE(Design of Experiment) and optimized the level of the factors using AMESim $4.0^{(R)}$ and visualNastran $4D^{(R)}$ Finally, we have verified improved result of the optimized factors with initial design.

Numerical Study to Improve the Flow Uniformity of Blow-Down HVAC Duct System for a Train (전동차용 Blow-Down HVAC 덕트 시스템의 유동 균일도 향상을 위한 수치적 연구)

  • Kim, Joon-Hyung;Rho, Joo-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • A HVAC(Heating Ventilation and Air Conditioning) is adapted to increase the comfort of the cabin environment for train. The train HVAC duct system has very long duct and many outlets due to the shape of a train set. the duct cross section shape is limited by a roof structure and equipments. Therefore, the pressure distribution and flow uniformity is an important performance indicator for the duct system. In this study, the existing blow down type HVAC duct system for a train was supplemented to improve the flow uniformity by applying a design method combining design of experiment (DOE) with numerical analysis. The design variables and the test sets were selected and the performance for each test set was evaluated using CFD(Computational Fluid Dynamics). The influence of each design variable on the system performance was analysed based on the results of the performance evaluation on the test sets. Furthermore, the optimized model, whose the flow uniformity was improved was produced using the direct optimization(gradient-based method). Finally, the performance of the optimized model was evaluated using numerical analysis, and it was confirmed that its flow uniformity has indeed improved.

High Stiffness Frame Design for a Spine Manipulation Device (척추교정 장치의 고강성 프레임 설계)

  • Moon, Young-Hwan;Kim, Jung-Hoon;Kim, Kwon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.89-95
    • /
    • 2011
  • High stiffness frame design for a spine manipulation device was developed in this research. For the safety of a spinal manipulation, high stiffness of the device is required. A finite element (FE) model of the device frame is created and validated by measured vibration data. Parameters are suggested for high stiffness design of the frame. Based on the Taguchi design of experiment (DOE), a practical set of design parameter values is suggested.

Optimal Design of Single-Phase Line-Start Permanent Magnet Synchronous Motor by using Design of Experiment (실험계획법을 이용한 단상 유도형 동기전동기의 최적 설계)

  • Kim, Seung-Joo;Jung, Dae-Sung;Lee, Chul-Kyu;Lee, Hyung-Woo;Lee, Ju;Oh, Se-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.699-704
    • /
    • 2007
  • In this paper, optimized model was designed for the starting characteristic of the Single-Phase Line-Start Permanent Magnet Synchronous Motor by using the Design of Experiment. A field pole angle, thickness and distance from center axis of permanent magnet were selected as design factor. We executed the transient state characteristic analysis of 8 test models. The transient state characteristic analysis was executed by using the 2 dimensional Finite Element Method and the Time Difference Method. We checked the fact that the selected design factor affected starting characteristic of the Line-Start Permanent Magnet Synchronous Motor. Depend on this result we found the optimized design point by using the response optimization.

A Study on the Working Condition Effecting on the Maximum Working Temperature and Surface Roughness in Side Wall End Milling Using Design of Experiment (실험계획법을 이용한 엔드밀 가공 시 최대가공온도와 표면조도에 미치는 가공조건에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • To find the working condition is one of the important factors in precision machining. In this study, we analyzed maximum working temperature by infra-red camera and surface roughness in side wall end milling using design of experiment (DOE): RSM(response surface methodology), ANOM(analysis of means) and ANOVA(analysis of variance) by table of orthogonal array. ANOM and ANOVA are well adapted to select sensitivity of design variables for maximum working temperature and surface roughness. The effective design variables and their levels should be determined using ANOM, ANOVA. RSM is presented 2nd order approximation polynomial of maximum working temperature and surface roughness is composed with design variables. Therefore, it is expected that the proposed procedure using design of experiment : table of orthogonal array, ANOM, ANOVA and RSM can be easily utilized to solve the problem of working condition.

  • PDF

Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method (반응표면법을 이용한 축류 압축기의 동익형상 최적설계)

  • Song, You-Joon;Lee, Jeong-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

Optimal Design of Grid Cathode Structure in Spherically Convergent Beam Fusion Device (구형 집속 빔 핵융합 장치에서 그리드 음극 구조의 최적 설계)

  • Ju, Heung-Jin;Park, Jeong-Ho;Hwang, Hwui-Dong;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 2008
  • Neutron production rate in spherically convergent beam fusion(SCBF) device as a portable neutron source strongly depends on the ion current and the grid cathode structure. In this paper, as the process of design and analysis, Design of Experiment(DOE) based on the results by Finite Element Method-Flux Corrected Transport(FEM-FCT) method is employed to calculate the ion current. This method is very useful to find optimal design conditions in a short time. Number of rings, radius of rings, and distance between the grid cathode and center are selected as control factors. From the results in the optimized model, the higher ion current is calculated and deeper potential well is also observed.

A novel approach to predict surface roughness in machining operations using fuzzy set theory

  • Tseng, Tzu-Liang (Bill);Konada, Udayvarun;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-13
    • /
    • 2016
  • The increase of consumer needs for quality metal cutting related products with more precise tolerances and better product surface roughness has driven the metal cutting industry to continuously improve quality control of metal cutting processes. In this paper, two different approaches are discussed. First, design of experiments (DOE) is used to determine the significant factors and then fuzzy logic approach is presented for the prediction of surface roughness. The data used for the training and checking the fuzzy logic performance is derived from the experiments conducted on a CNC milling machine. In order to obtain better surface roughness, the proper sets of cutting parameters are determined before the process takes place. The factors considered for DOE in the experiment were the depth of cut, feed rate per tooth, cutting speed, tool nose radius, the use of cutting fluid and the three components of the cutting force. Finally the significant factors were used as input factors for fuzzy logic mechanism and surface roughness is predicted with empirical formula developed. Test results show good agreement between the actual process output and the predicted surface roughness.