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Abstract

The increase of consumer needs for quality metal cutting related products with more precise tolerances and better product surface roughness
has driven the metal cutting industry to continuously improve quality control of metal cutting processes. In this paper, two different approaches
are discussed. First, design of experiments (DOE) is used to determine the significant factors and then fuzzy logic approach is presented for the
prediction of surface roughness. The data used for the training and checking the fuzzy logic performance is derived from the experiments
conducted on a CNC milling machine. In order to obtain better surface roughness, the proper sets of cutting parameters are determined before the
process takes place. The factors considered for DOE in the experiment were the depth of cut, feed rate per tooth, cutting speed, tool nose radius,
the use of cutting fluid and the three components of the cutting force. Finally the significant factors were used as input factors for fuzzy logic
mechanism and surface roughness is predicted with empirical formula developed. Test results show good agreement between the actual process
output and the predicted surface roughness.
& 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. All rights reserved. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Manufacturing has played an ever-increasing role in our lives.
Not only are we concerned with how products are produced and
delivered to us, but we are also concerned with how well the
products are built. Manufacturers around the world continuously
seek new and improved methods of product manufacturing to meet
the expectations of the consumer. There are many aspects of
manufacturing that can be considered when looking for new and
improved methods of production. Efforts can be focused on
manufacturing systems, manufacturing processes, or manufacturing
materials. All of these efforts together transform raw materials into
end products. Within the area of manufacturing processes, different
processes can be evaluated for their impact on processing time,
efficiency of production methods, and quality of finished products.

The quality of finished products is defined by how closely
the finished product adheres to the specifications. Surface
roughness (Ra) is the most commonly used index to determine
surface quality. It is a measure of smoothness for a machined
surface. Surface quality is defined and identified by the
combination of surface finish, surface texture, and surface
roughness. Surface finish and surface roughness express and
represent the same characteristic. Surface roughness is defined
as the fine irregularities produced on a workpiece by a cutting
tool. Surface texture relates to deviations from a nominal
surface that forms the pattern of the surface. The terms surface
texture, surface finish, and surface roughness are used inter-
changeably in industry as well as in this paper [1]. Many
lifelong attributes of a product are determined by how well the
integrity of the surface finish is maintained. Painting or coating
adherence, surface reflectivity, and frictional requirements are
examples for which the surface roughness may be specified.
Defects occur when the surface roughness requirement is not
met. Applied surfaces may fail to adhere properly and parts
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may not assemble properly due to excessive frictional compo-
nents exhibited through poorly machined surfaces.

Numerous factors affect surface roughness in the machining
process. While some factors are difficult or impossible to
control, some controllable process parameters include feed,
cutting speed, tool geometry, and tool setup. Other factors that
are harder to control include tool vibration, work-piece and
machine vibration, tool wear and degradation, and workpiece
and tool material variability [2]. These factors interact to
influence the quality of the surface finish produced. When the
surface does not meet the specifications, parameters are
adjusted and the original or a new workpiece is inserted into
the machining center for machining [3]. Depending on the
materials, the effect of major variables on the surface rough-
ness changes significantly. For instance, highly ductile materi-
als tend to induce a built-up edge on the tool nose, hence
creating degraded surface in terms of roughness. Very brittle
materials such as cast iron also create challenging machining
conditions due to fractures, which worsens the surface rough-
ness. In the case of aluminum alloys, as the hardness of
material increases, the surface roughness tends to improve.
However, very hard materials induce vibration during the
machining that generates the rough surface finish. Therefore,
some widely machined common materials such as medium
carbon alloy steel contain the elements that help improve the
machinability. Moderately ductile yet hard materials fixed on a
rigid machine tool tend to manifest the desirable machining
condition, if the cutting tool materials, coolants, chip breakers
and major variables are correctly applied. The major variables
can be independently controlled to attain the desired surface
roughness. For instance, the feed rate is usually set at a slow
level to improve the surface roughness. The cutting speed is set
at a rather higher level to prevent the built-up edge from
occurring on the tool nose. Cutting depth is usually set to be
small in order to reduce the machining vibration as well as the
resistance or opposing cutting force from the materials. Over-
all, a combination of slow feed rate, higher cutting speed, and
small depth of cut is employed to generate the smooth surface.

In this context, the main idea behind this research is that one
should develop techniques to predict the surface roughness of a
product before milling to evaluate the robustness of machining
parameters for keeping a desired surface roughness and
increasing product quality for a given set of cutting conditions,
work material, tool insert type and tool geometry. It is also
important that the prediction technique be accurate and reliable
[4]. This can be achieved with the help of Fuzzy logic and
fuzzy inference systems which are proven to be effective
techniques for the identification, prediction and control of
complex, nonlinear, and vague systems. Fuzzy logic is
particularly attractive due to its ability to solve problems in
the absence of accurate mathematical models [5]. The overall
objective of this research was to develop an algorithm for
milling operation that predicts surface roughness with designed
set of conditions. Two approaches DOE and Fuzzy Logic were
used where the design of experiments (DOE) is an effective
approach to optimize the throughput in various manufacturing-
related processes. The fractional factorial DOE and statistical

analysis of variance (ANOVA) will be used to represent, infer,
and screen the milling parameters in order to generate
appropriate training data for the fuzzy logic. Furthermore,
ANOVA will be used to check the statistical significance of
individual milling parameters on the value of the surface
roughness. Once the significant factors are determined, these
factors will be used as input parameters for Fuzzy Logic and
with the help of Fuzzy inference system. IF-THEN rules are
framed depending on the operator's experience and knowledge
which employs a mode of approximate reasoning that resem-
bles the decision-making process of humans. The behavior of a
fuzzy system is easily understood by a human expert as
knowledge is expressed by means of intuitive, linguistic rules
[6]. A fuzzy system is usually designed by interviewing an
expert and formulating their implicit knowledge of the under-
lying process into a set of linguistic variables and fuzzy rules.
For complex control tasks, obtaining the fuzzy knowledge base
from an expert often requires a tedious and unreliable trial and
error approach. Unlike neural networks, generic fuzzy systems
do not require training data as part of their development
process. However, several techniques have been proposed to
extract fuzzy rules from training data gathered from observa-
tions of the operator control strategy [5]. Fuzzy rules and
membership functions are build using fuzzyTECH 5.5i soft-
ware from which fuzzy output (surface roughness) is derived.
Surface finish of the machined part is the output of the process
which is then compared with the experimental data. Minimum
error is obtained through numerous experiments or data points.
The fuzzy logic model built is capable of predicting the surface
finish for a given set of inputs (cutting speed, feed rate, and
depth of cut). As such, the machinist may predict the quality of
the surface for a given set of working parameters and may also
set the process parameters to achieve a certain surface finish.
The model is verified experimentally by employing different
sets of inputs. This study deals with the experimental results
obtained during end milling on 6061 T6 Al.

2. Theoretical background of fuzzy logic and surface
roughness

2.1. Fuzzy logic

Fuzzy logic is a basic concept which refers to all theories and
technologies that employ fuzzy set. It is basically a multi-valued
logic that allows intermediate values to be defined between
conventional evaluations like yes/no, true/false, black/white etc.
to degrees of truth between 0 and 1 [7]. Fuzzy logic was invented
by Professor Zadeh in 1964. The concept of fuzzy logic came
from the idea of grade of membership, which became the
backbone of fuzzy set theory. Fuzzy logic is the logic of
approximate reasoning with traditional precise reasoning as the
limiting case [8]. What zadeh means by “the logic of approximate
reasoning” is that in many cases “4th digit” accuracy is not crucial
to system performance, but rather, what is important is quick
approximate judgments, much like how a human would perform.
For example, Zadeh wrote that a set of speed measurements
grouped around a point on a speed continuum would be lumped
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together and called “slow” by fuzzy logic. By eliminating these
precise measurements, computations would be simplified and
executed more rapidly [9]. Fuzzy logic core technique is based on
four basic concepts. (1) Fuzzy sets: sets with smooth boundaries;
(2) linguistic variables whose values are both qualitatively and
quantitatively described by a fuzzy set; (3) possibility distributions
which constraints on the value of a linguistic variable imposed by
assigning it a fuzzy set and (4) fuzzy if-then rules: a knowledge
scheme for describing a functional mapping or a logic formula that
generalizes an implication in tow valued logic. [8].

2.1.1. Fuzzy sets
A fuzzy set is a generalization to classical set to allow objects to

take partial membership in vague concepts (i.e., fuzzy sets) [10].
The Best way to introduce fuzzy sets is to start with a limitation of
classical sets. A set in classical set theory always has a sharp
boundary because membership in a set is black and white concept
—an object either completely belongs to the set or does not
belong to the set at all. [8]. The degree an object belongs to a
fuzzy set, which is a real number between 0 and 1, is called the
membership value in the set. The meaning of a fuzzy set is thus
characterized by a membership function that maps elements of a
universe of discourse to their corresponding membership values.
The membership function of a fuzzy set “A” is denoted as mA. In
addition to membership functions, a fuzzy set is also associated
with a linguistically meaningful term (e.g., “healthy” family).
Associating a fuzzy set to a linguistic term offers two important
benefits [11].

2.1.1.1. Representation of fuzzy set. A Fuzzy set can be
defined in two ways: (1) by enumerating membership values of
those elements in the set (completely or partially), or (2) by
defining the membership function mathematically. The first
approach is possible only if the set is discrete, because a
continuous fuzzy set has an infinite number of elements.
Generally, a fuzzy set A can be defined through enumeration
using expression

A¼
X
i

μAðxiÞ=xi ð1Þ

where the summation and addition operators refer to the union
operation and the notation μA(xi)/xi refers to a fuzzy set
containing exactly one(partial) element x with a membership
degree μA(xi).

2.1.2. Membership functions
A membership function (MF) is a curve that defines how each

point in the input space is mapped to a membership value (or
degree of membership) between 0 and 1. The input space is
sometimes referred to as the universe of discourse, a fancy name
for a simple concept. It characterizes the fuzziness in a fuzzy set-
whether the elements in the set are discrete or continuous- in a
graphical form for eventual use in the mathematical formalisms of
fuzzy set theory [12]. There exits numerous types of membership
functions, the most commonly used in practice are triangles,
trapezoids, bell curves, Gaussian, and sigmoidal functions. All of
them are parameterized functions commonly used to define one

dimensional MFs with a single input. Most of the membership
functions can be described with a few parameters (e.g. three in the
case of a triangle: endpoints and apex), which makes it very easy
to calculate the degree of membership of a specific value.

2.1.3. Linguistic variable
Linguistic variables play an essential role in fuzzy logic,

artificial intelligence and decision making systems. Basically,
they are words or expressions that describe the inputs and outputs
of a system. For example, consider the amount of traffic on I-10
East. When it is said, “Traffic Flow is Low,” the expres-
sion “Low” is the name of a fuzzy set that describes the amount
of traffic, while the linguistic variable is “Traffic Flow.”
A linguistic variable is a variable whose value can be described:
1) qualitatively using an expression involving linguistic terms,
and 2) quantitatively using a corresponding membership function
[13]. The linguistic term is useful for communicating concepts
and knowledge with human beings; whereas membership func-
tion is useful for processing numeric input data. A linguistic
variable is like a composition of a symbolic variable in AI (a
variable whose value is a symbol) and a numeric variable (a
variable whose value is a number) in science and engineering. In
general, the value of a linguistic variable can be a linguistic
expression involving a set of linguistic terms, modifiers such as
“very,” “more or less” (called hedges), and connectives (e.g.,
“and,” “or”) [11].

2.1.4. Fuzzy rules
Among all the techniques developed using fuzzy sets, fuzzy if-

then rules are by far the most visible due to their wide range of
successful industrial applications ranging from consumer products,
robotics, manufacturing, process control, automotive control,
medical imaging, to financial trading. A fuzzy if-then rule
associates a condition about linguistic variables to a conclusion.
From a knowledge representation viewpoint, a fuzzy if-then rule is
a scheme for capturing knowledge that involves imprecision. The
main feature of reasoning using these rules (i.e., fuzzy rule-based
reasoning) is its partial matching capability, which enables an
inference to be made from a fuzzy rule even when the rule's
condition is only partially satisfied [8]. That is, it computes the
degree the input data matches the condition of a rule. Fig. 1
illustrates one way to calculate the matching degree between fuzzy
input A0 and a fuzzy condition A. Matching degree (A, A0)¼supx
min (μA (x), μA0(x))
The degree of the input data matches the condition of a rule

is combined with the consequent (i.e., “then” part) of the rule
to form a conclusion inferred by the fuzzy rule. The higher is
the matching degree; the closer is the inferred conclusion to the
rule's consequence. There are two different types of fuzzy
rules: 1) fuzzy mapping rules, and 2) fuzzy implication rules
(see Table 1). A fuzzy mapping rule describes a functional
mapping relationship between inputs and an output using
linguistic terms, while a fuzzy implication rule describes a
generalized logic implication relationship between two logic
formula involving linguistic variables. The foundation of fuzzy
mapping rule is fuzzy graph, while the foundation of fuzzy
implication rule is a generalization to two-valued logic or
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narrow sense of fuzzy logic. The inference of fuzzy mapping
rules involves a set of rules whose antecedent conditions form
a fuzzy partition of the input space. Such a collection of fuzzy
mapping rules is called a fuzzy model. The inference of fuzzy
implication rules are performed individually. Even though the
inference results of these rules can be combined, the desired
properties of their inference are described in terms of the
behavior of individual rules (e.g., generalized modus ponens
and modus tollens involving hedges). Consequently, fuzzy
mapping rules are designed as a group, whereas fuzzy
implication rules are designed individually [8,11]. In general,
the distinctions between fuzzy implication rules and fuzzy
mapping rules are subtle, yet important.

2.1.5. Fuzzy rule-based inference
The algorithm of fuzzy rule-based inference consists of three

basic steps and an additional optional step: fuzzy matching,
fuzzy inference, fuzzy combination and defuzzification [14];

a. Fuzzy matching: it is a process to calculate the degree to
which the input data match the condition of the fuzzy rules.

b. Inference: it is a process to calculate the rule's conclusion
based on its matching degree. After the fuzzy matching
step, a fuzzy inference step is invoked for each of the
relevant rules to produce a conclusion based on their
matching degree. There are two methods: (1) the clipping
method and (2) the scaling method.

c. Combining fuzzy conclusions: the two steps in fuzzy
inference described so far enable each fuzzy rule to infer a
fuzzy statement about the value of the consequent variable.
Because a fuzzy rule-based system consists of a set of fuzzy
rules with partially overlapping conditions, a particular input to

the system often “triggers” multiple fuzzy rules (i.e., more than
one rule will match the input to a nonzero degree). Therefore, a
third step is needed to combine the inference results of
these rules.

d. Defuzzification: for a fuzzy system whose final output needs
to be in a crisp (non-fuzzy) form, a fourth step is needed to
convert the final combined fuzzy conclusions into a crisp
one. This step is called defuzzification which gives a
quantitative summary and is more commonly used in fuzzy
logic control and many other industrial applications. There
are two common defuzzification techniques: mean of
maximum and center of area.
i) Mean of Maximum (MOM)

The Mean of Maximum (MOM) defuzzification
method calculates the average of those output values
that have the highest possibility degrees. Suppose “y is
A” is a fuzzy conclusion to be defuzzified. We can
express the MOM defuzzification method using the
following formula:

MOMðAÞ ¼

P
yn AP

yn ���P��� ð2Þ

where P is the set of output values y with highest
possibility degree in A, i.e., an example of MOM.

A major limitation of MOM defuzzification is that it
does not take in to account the overall shape of the
possibility distribution. Two fuzzy conclusions with the
same peak points, but otherwise different shapes, will
yield the same defuzzified result using the MOM
method. The above example depicts of such results.

ii) Center of Area (COA)
The Center-of-Area (COA) method (also referred to as

the center-of-gravity, or centroid method in the litera-
ture) is the most popular defuzzification technique.
Unlike MOM, the COA method takes into account the
entire possibility distribution in calculating its represen-
tative point. The defuzzification method is similar to the
formula for calculating the center of gravity in physics, if
we view mA (x) as the density of mass at x. Alternatively,
we can view the COA method as calculating a weighted
average, where mA (x) serves weight for value x. If x is
discrete, the defuzzification result of A is

COAðAÞ ¼

P
x
μAðxÞ � xP
x
μAðxÞ

ð3Þ

Table 1
Comparison of two types of fuzzy rules.

Fuzzy mapping rules Fuzzy implication rules

Purpose Approximate functional mappings Generalize implications for handling imprecision
Desired inference Forward only Generalized modus ponens and modus tollens
Application Control, system modeling, and signal processing Diagnostics, high-level decision making
Related disciplines System ill, piecewise linear interpolation, neural networks Classical logic, multi-valued logic, other extended logic systems
Typical design approach Designed as a rule set Designed individually
Suitable problem domains Continuous nonlinear domains Domains with continuous and discrete variables

A’
A

Fig. 1. Matching a fuzzy input A0 with a fuzzy condition A.
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Similarly, if x is continuous, the result is

COAðAÞ ¼
R
μAðxÞxdxR
μAðxÞdx

ð4Þ

An example of COA defuzzification is shown in above Fig. 2.
The main disadvantage of the COA method is its high computa-
tional cost but the calculation can be simplified for some fuzzy
models. Even though this is the case for most fuzzy rule-based
systems, there are situations in which defuzzification cannot be
completely separated from the fusion step [8] (Fig. 3).

2.2. Surface roughness

The terms surface finish and surface roughness are used widely
in industry and are generally used to quantify the smoothness of a
surface finish. In 1947, the American Standard B46.1-1947
“Surface texture” defined many of the concepts of surface
metrology and terminology which overshadowed previous stan-
dards. A few concepts are discussed and shown as follows
[15,16]:

Surface texture: surface texture is the pattern of the surface
which deviates from a nominal surface. The deviations may be
repetitive or random and may result from roughness, waviness,
lay, and flaws [17].

Real surface: the real surface of an object is the peripheral
skin which separates it from the surrounding medium. This
surface invariably assimilates structural deviations which are
classified as form errors, waviness, and surface roughness.

Roughness: roughness consists of the finer irregularities of
the surface texture usually including those irregularities that
result from the inherent action of the production process.
These are considered to include traverse feed marks and other
irregularities within the limits of the roughness samp-
ling length. Profiles of roughness and waviness are shown
in Fig. 4 [17,24].
Roughness width: roughness width is the distance parallel to

the nominal surface between successive peaks or ridges which
constitute the predominant pattern of the roughness.
Roughness width cutoff: roughness width cutoff is included

in the measurement of average roughness height which denotes
the greatest spacing of repetitive surface irregularities. It is
rated in thousandths of an inch. Standard tables list roughness
width cutoff values of 0.003, 0.10, 0.030, 0.100, 0.300 and
1.000 in. If no value is specified, a rating of 0.030″ is assumed.
Waviness: waviness is the more widely spaced component

of surface texture. Unless otherwise noted, waviness should
include all irregularities whose spacing is greater than the
roughness sampling length and less than the waviness sam-
pling length. Waviness may result from such factors as
machine or work deflections, vibration chatter, heat treatment,
or warping strains. Roughness may be considered as super-
imposed on a wavy surface as shown in Fig. 4 [17,18,24].
Waviness height: waviness height is the peak-to-valley

distance which is rated in inches.
Waviness width: waviness width is the spacing of successive

wave peaks or successive wave valleys which is rated in
inches.
Lay: lay is the direction of the predominant surface pattern,

ordinarily determined by the production method used.
Flaws: flaws are unintentional, unexpected and unwanted

interruptions in the topography typical of a part surface.
Peak: a peak is the point of maximum height on that portion

of a profile that lies above the center line and between two
intersections of the profile with the center line.
Valley: a valley is the point of maximum depth on that

portion of a profile that lies below the center line and between
two intersections of the profile with the center line.
Roughness sampling length: the roughness sampling length

is the sampling length within which the roughness average is
determined. This length is chosen, or specified, to separate the

XX0

Fig. 2. An example of MOM defuzzification.

XX0

A

Fig. 3. An example of COA defuzzification.

Lay (Direction of
surface pattern)

Flaw

Waviness height

Waviness width

Roughness
width

Roughness height

Fig. 4. Roughness and waviness profile.
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profile irregularities which are designated as roughness from
those irregularities designated as waviness.

2.2.1. Surface finish parameters
Surface finish could be specified in many different para-

meters. A large number of newly developed surface roughness
parameters were conceived and the instruments to measure
them were developed, due to the need for different parameters
in a wide variety of machining operations. Some of the popular
parameters of surface finish specification are described as
follows:

Roughness average, Ra: this parameter is also known as the
arithmetic mean roughness value, (arithmetic average) AA or
(center line average) CLA. Ra is universally recognized and the
most used international parameter of roughness. Therefore,

Ra ¼
1
L

Z l

0

���YðxÞ���dx ð5Þ

where Ra is the arithmetic average deviation from the mean
line, L is the sampling length and y is the ordinate of the curve
of the profile. It is the arithmetic mean of the deviation of the
roughness profile [24], from the mean line. An example of the
surface profile is as shown in Fig. 5 [24]. An approximation of
the average roughness Ra may be obtained by adding the Y
increments, without regard to sign and dividing the sum by the
number of increments

Therefore

Ra ¼ ðy1þy2þy3þy4þ⋯ynÞ
n

ð6Þ

Root-mean-square (rms) roughness, Rq: Rq is the root-mean-
square parameter corresponding to q [24],

Rq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

� � Z 1

0
ðYðxÞÞ2d

s
x ð7Þ

Or approximately

Ra ¼
ffiffiffiffiffiffi
ðy21

q
þy22þy23þy24þy25þ⋯y2nÞ=n ð8Þ

Maximum peak-to-valley roughness height, Ry or Rmax: this is
the distance between two lines parallel to the mean line that
contacts the extreme upper and lower points on the profile
within the roughness sampling length.

Ten-point height, Rz: Rz is also known as the IS0 10-point
height parameter and is measured on the unfiltered profile

only. It is numerically the average height difference between
the five highest peaks and the five lowest valleys within the
sampling length.
Skewness, Rsk: Rsk is the measure of the symmetry of the

profile about the mean line. It will distinguish between
asymmetrical profiles of the same Rs or Rq because it is
sensitive to occasional deep valleys or high peaks. A negative
skewness would represent profiles with deep scratches. A
surface profile with valleys filled in or high peaks have
positive skewness. Fig. 6 illustrates these two cases.

Rsk ¼
1

nR3
q

Xn
1

y3t ð9Þ

where n¼number of data points in the profile.
Kurtosis, Rku: Rku is a measure of the sharpness of the

surface profile. If Rkuo3, then distribution has relatively few
high peaks and low valleys. If Rku43, the surface has
relatively many high peaks and low valleys. Therefore

Rku ¼ 1

nR4
q

Xn
1

y4t ð10Þ

where n¼ the number of data points in the profile.

2.2.2. End milling
The basic geometry of the end milling is shown in Fig. 7,

where Vc is the cutting speed (rpm), D is the diameter of the
cutter (mm), Ns is the rotational speed of the cutter (rpm), ft is
feed per tooth (mm/tooth), fr (f, n,) is the feed per revolution
(mm/rev), nt is the number of teeth on the cutter, fm(f, N,) is the
feed per minute (mm/min), aa is the axial depth (mm) and ar is
the radial depth (width) of cut (mm). In end-milling operations,
the theoretical surface roughness is generally dependent on the
cutting tool geometry, the tool material, the workpiece
geometry, the workpiece material, the cutting conditions, the
cutter run-out, the mode of milling, the machine-tool rigidity,
etc. However, the theoretical surface roughness, Ra for end
milling can be estimated using the following equation [19–21]:

Ra ¼ f t
2=ð32ðR7 f tnt=ΠÞÞ ð11Þ

where R, is the surface roughness CLA (μm), n, is the number
of teeth on the cuter, R is the radius of the cutter, and the þve
sign refers to up milling and the �ve sign to down milling.
The surface finish produced in the face-milling operating by an

1 1 1 1

Y

X

L

Fig. 5. Profile of surface texture.

Profile
Amplitude

distribution curve

L

Rsk is negative

Rsk is positive

Fig. 6. Illustration of negative and positive Rsk.
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end-mill insert can be expressed as [22,23]:

Ra ¼ f t
2=32r ð12Þ

where r is the nose radius of the end-mill insert. The actual
surface roughness is usually greater than the theoretical
roughness values given by the Eq. 11 and Eq. 12 because of
the above expressions do not take into account vibration,
deflection of the work–tool system, chatter, and the built-up-
edge embedded machined.

2.2.3. Factors for machining
Among several CNC industrial machining processes, milling

is a fundamental machining operation. The quality of the
surface plays a very important role in the performance of
milling as a good-quality milled surface significantly improves
fatigue strength, corrosion resistance, or creep life. Surface
roughness also affects several functional attributes of parts,
such as contact causing surface friction, wearing, light reflec-
tion, heat transmission, ability of distributing and holding a
lubricant, coating, or resisting fatigue. Therefore, the desired
finish surface is usually specified and the appropriate processes
are selected to reach the required quality. Several factors will
influence the final surface roughness in a CNC milling
operation. The final surface roughness might be considered
as the sum of two independent effects: 1) the ideal surface
roughness is a result of the geometry of tool and feed rate and
2) the natural surface roughness is a result of the irregularities
in the cutting operation [24]. Factors such as spindle speed,
feed rate, and depth of cut that control the cutting operation
can be setup in advance. However, factors such as tool
geometry, tool wear, chip loads and chip formations, or the
material properties of both tool and workpiece are uncontrolled
[25]. Even in the occurrence of chatter or vibrations of the
machine tool, defects in the structure of the work material,
wear of tool, or irregularities of chip formation contribute to
the surface damage in practice during machining [26]. One
should develop techniques to predict the surface roughness of a
product before milling in order to evaluate the fitness of

machining parameters such as feed rate or spindle speed for
keeping a desired surface roughness and increasing product
quality. It is also important that the prediction technique should
be accurate, reliable, low-cost, and non-destructive. Therefore,
the purpose of this study is to develop one surface prediction
technique which is termed the multiple regression prediction
model and then evaluate its prediction ability.

2.2.4. Factors responsible for surface roughness
Important factors which have impact on surface roughness

are feed rate, depth of cut, cutting speed, tool angle and
cooling fluid. Apart from these, factors such as tool material,
nose radius, cutting forces and vibrations will also have an
affect on surface roughness. Fishbone diagram below gives us
clear notion of the factors responsible for surface roughness
(Fig. 8).

3. Methodology

This research is divided into two phases where phase one is
implementing design of experiments to determine important
factors from experiments and to derive regression models.
Phase Two is applying fuzzy logic to predict surface roughness
and to develop a surface roughness prediction model in end
milling. The selection of machining parameters becomes
dependent on the experience and intuition of the process
engineers or machinists who specify the parameters in order to
generate a required surface roughness, especially when there is
no prior knowledge or cutting data. A machinability database
can only give a rough approximation of the process behavior;
hence machining parameters are selected conservatively. A
small number of test cuts can be made to gauge the surface
roughness and the machining parameters may be adjusted
accordingly, yet this approach can hardly reach the optimum
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Fig. 8. Fishbone diagram with factors that affect surface roughness.
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solution in a consistent manner. If a new set of cutting
experiments is to be avoided to get the correct machining
parameters, the accurate prediction of surface roughness may
be a substitute for the model reformulation. Instead, surface
roughness can be roughly predicted based on the anticipated
process behavior that is directly inferred from the process
knowledge and experience [27]. Fig. 9 illustrates a conceptual
framework of methodology development which includes
design of experiment sand fuzzy logic.

3.1. Phase I: design of experiments

To develop a surface roughness model, the experiments
examined the impact of the following parameters on the
surface roughness in end milling: (1) feed rate, (2) spindle
speed, (3) depth of cut, (4) nose radius, and (5) cutting fluid.
The data needed for the training must derive from experiments
rather than handbooks for a more realistic depiction of the
phenomenon under investigation. The factors that are poten-
tially taken into account are taken from literatures and are
briefly analyzed first. Then, in view of the number of factors
and continuous range of values that most of them take, a
strategy for reduction of the number of experiments (measured
values) should be devised. These factors were chosen from
previous researches done in end milling. Note that design of
experiments was performed based on the levels of interest for
each factor.

The levels of interest for each factor are presented
in Table 2. This research assumes that the three-, four- and
five-factor interactions are negligible, because these high order
interactions are normally assumed highly impossible in prac-
tice. Therefore, a 25�1 fractional design is selected. This
resolution V design leads to 16 runs of experiments and a
replicate number of three are selected, respectively. As a result,
the total number of experiments is 16� 3¼48. The design is
shown in Table 3.

The order of the 48 experiments is randomized first. Then
these experiments are conducted on three-axis, vertical CNC
milling machine (Cincinnati Milacron Arrow 750 CNC VMC
with a 0.0001″-repeatability). A spindle touch probe (a
Renishaw MP 700 surface sensing wireless probe) and a
Renishaw TS27R tool setting probe are used to collect the
surface roughness data. Three measurements are taken for each

sample and each measurement is about 120 degrees apart. The
average AA values of the three measurements from each
sample are presented in Table 3.
These runs are then performed in statistical software

“MINITAB” where runs are analyzed using factorial design
and ANOVA is performed for surface roughness. Results from
ANOVA have proven that feed rate, cutting speed and depth of
cut are the three significant factors out of five factors. P values,
T values R2¼95.54% and R2 (adj.)¼93.44% values proves

our tests and validates the results. These three factors feed rate,

Data from
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Fig. 9. Conceptual framework of methodology development.

Table 2
Factors and levels of interest for design of experiments.

Level Factors

Feed rate Cutting
speed

Depth of
cut

Nose
radius

Cutting
fluid

Low
(�1)

40 mm/min 1200 rpm 2 mm 0.1 mm 2%

High
(þ1)

300 mm/min 4000 rpm 25 mm 0.5 mm 5%

Table 3
Design of experiments and data for model construction.

Run Feed
rate

Cutting
speed

Depth of
cut

Nose
radius

Cutting
fluid

Surface
roughness

1 2 3

1 1 1 1 �1 �1 2.96 3.38 3.33
2 1 1 1 1 1 3.15 2.84 2.79
3 1 1 �1 �1 1 3.1 3.61 3.21
4 1 1 �1 1 �1 2.41 3.44 2.85
5 1 �1 1 1 �1 5.18 5.56 5.23
6 1 �1 1 �1 1 5.69 4.5 5.63
7 1 �1 �1 �1 �1 5.2 4.91 4.67
8 �1 �1 1 1 1 1.51 1.49 1.44
9 1 �1 1 �1 �1 0.85 0.9 0.88
10 �1 1 1 �1 1 1.9 1.47 1.32
11 �1 �1 �1 1 �1 1.79 2.13 1.67
12 �1 1 1 1 �1 0.79 0.59 0.86
13 �1 1 �1 1 1 2.44 2.16 0.63
14 �1 �1 �1 �1 1 1.01 1.32 1.18
15 �1 1 �1 �1 �1 2.81 3.69 2.89
16 1 �1 �1 1 1 5 5.63 4.5
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cutting speed and depth of cut are taken as input factors for
fuzzy logic and phase two is performed.

3.2. Phase II: fuzzy logic

Fuzzy logic approach is used to construct the algorithms that
predict the surface roughness. The basic concept of fuzzy logic
is to categorize the variables into fuzzy sets with a degree of
certainty in the numerical interval (between 0 and 1) so that the
imprecision and vagueness in the data structure and human
knowledge can be handled without constructing complex
mathematical models [28,29]. The construction of a fuzzy
algorithm is based on significant factors that were developed
in Section 3 where feed rate, cutting speed and depth of cut
were found to be the most significant variables to the outcome
of the surface roughness. The functional relation defined by a
fuzzy predictor is: f:F,Cs, D-Ra1 where f denotes nonlinear
relationship between surface roughness and F (feed rate) and
Cs (Cutting speed), D (Depth of cut) and Ra1, (fuzzy output) is
a subset of surface roughness Ra. The fuzzy algorithm has
three inputs and a single output. Feed rate, cutting speed and
depth of cut are two fuzzy inputs, where as the predicted value
of surface roughness is the fuzzy output. Three fuzzy inputs
are the same as the independent variables derived from DOE
and ANOVA. The basic structure of the fuzzy predictor is
illustrated in Fig. 10 below.

3.2.1. Membership functions
In this research, only feed rate, cutting speed and depth of

cut are significant factors from empirical experiments. There-
fore, these factors form as input variables which impact
singleton output variable, surface roughness. Below, member-
ship functions of these input variables are introduced next.

Feed rate: seven different membership functions for feed
rate are chosen based on machining experts and fuzzy logic
experts. The row vector of feed rate is FT¼{VS, S, MS, M,
MF, F, VF} where VS is very slow feed rate (40 mm/min); S is
slow (80 mm/min); MS is medium slow (110 mm/min); M is
medium (150 mm/min); MF is medium fast (195 mm/min); F

is fast (240 mm/min); VF is very fast (300 mm/min).
Cutting speed: membership functions of cutting speed are

divided into 3 different speeds
Cs¼{S, M, H} where S is slow cutting speed (1200 rpm);

M is medium cutting speed (2600 rpm); H is high cutting
speed (4000 rpm).
Depth of cut: depth of cut also has 3 membership functions.

Dc¼{S, M, D} where S is shallow depth of cut (2 mm); M is
medium deep (10 mm); D is deep (20 mm).
Surface roughness: the output factor of fuzzy logic has been

divided into 5 membership functions Ra¼{VF, F, M, R, VR}
where VF is very fine (30 mm); F is fine (50 mm); M is medium
(100 mm); R is rough (130 mm); VRis very rough (150 mm).
Surface roughness values are selected from the experiment

data, which represent the average values of surface roughness
under three different levels of cutting speed, depth of cut and
cutting speed.

3.2.2. Fuzzy rule base
The partition of fuzzy input determines the number of rules.

Since there are seven, three and three partitions for each input
variable, there would be 63 rules. Basically, fuzzy rules dictate
the relationship between the input variables and the output
variables, which allows the proper selection of control actions
according to the characteristics of the fuzzy inputs and Fuzzy
outputs are obtained by the Center of Area (CoA) defuzzifica-
tion method. Table 4 summarizes the fuzzy rule base defined in
this study.

4. Numerical case study

4.1. Machining experiment

Milling Operation was performed on a three-axis, vertical
CNC milling machine (Cincinnati Milacron Arrow 750 CNC
VMC with a 0.0001″ repeatability). A spindle touch probe (a
Renishaw MP 700 surface sensing wireless probe) and a
Renishaw TS27R tool setting probe are used to collect the
surface roughness data. All experiments are performed on

Feed
Rate
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Depth

Fuzzification Fuzzy
Inferencing Defuzzification Ra

Crisp
Outputs

Output
Membership

Functions

Fuzzy Rule
Base

Input
Membership

Functions

Fuzzy Input Fuzzy Output
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Fig. 10. Structure of fuzzy predictor.
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Aluminum 6061 T6 and a total of 20 parts were machined
using a 1-in. diameter, 2-flute cobalt high speed steel (HSS)
end mill. This particular type of alloy and inserts are chosen
because 6061 T6 AL has an ultimate tensile strength of at least
42,000 psi (290 MPa) and yield strength of at least 35,000 psi
(241 MPa). In thicknesses of 0.250 in. (6.35 mm) or less, it has
elongation of 8% or more; in thicker sections, it has elongation
of 10%. Moreover, it presents fewer tool life problems than
most other metals; it is very easy to cut, so tools have great
longevity. It has low cutting forces and the mean temperature
developed in aluminum chips is usually 5000–9000 F with
somewhat higher magnitudes at the chip/tool interface. Posi-
tive rake angles of 110, 150, and 200 are required but 200 and

260 styles are preferred to achieve both positive rakes and
ample clearances. High cutting speeds are maintained through-
out the experiment to delay built-up edge, reduce time in cut,
and dissipate more heat into chips and less into the tool nose.
Centrifugal force from higher speeds also helps to expel chips
[30]. High speed steel or cobalt cutting tools are chosen for
shorter production runs in non-ferrous materials and applica-
tions where machining conditions restrict the use of harder,
more brittle substrates. These tools exhibit lower wear resis-
tance and notably less heat resistance than carbide cutting
tools [31].

4.2. Computational results from DOE

To establish the prediction model, regression model and to
find the impact of significant factors a software package
MINITAB (Minitab 2005) is used to perform ANOVA and
Regression analysis using the experimental data. Table 5
summarizes the DOE result and the model. Both the high
R2, adjusted-R2 value and the zero P-value in the analysis of
variance (ANOVA) presented in Table 5 shows that this model
has a satisfactory goodness of fit. Among the five parameters
considered, feed rate, cutting speed and depth of cut signifi-
cantly affect the surface roughness independently for a
significance level α¼0.05. In addition, five two-factor inter-
action terms among these five variables also significantly affect

Table 4
Fuzzy rule bank.

S Low cutting speed Medium cutting speed High cutting speed

F D S MD D S MD D S MD D

VS M R VR F MD R VF F M
S R VR VR F MD R VF F M
MS R VR VR F MD R F F M
MS R VR VR M R VR F MD R
MF R R VR R VR VR VM R VR
F VR VR VR R VR VR R VR VR
MF VR VR VR R R VR R VR VR

Table 5
ANOVA result from Minitab.

Factorial fit: surface toughness versus feed rate, cutting speed, etc.
Estimated effects and coefficients for surface roughness (coded units)

Term Effect Coef SE Coef T P
Constant 2.8435 0.05921 48.03 0.000
Feed rate 2.5438 1.2719 0.05921 21.48 0.000
Cutting speed 0.8021 0.401 0.05921 6.77 0.000
Depth of cut 0.3338 0.1669 0.05921 2.82 0.008
Nose radius �0.1804 �0.0902 0.05921 �1.52 0.137
Cutting fluid �0.0604 �0.0302 0.05921 �0.51 0.613
Feed rate*cutting speed �1.2504 �0.6252 0.05921 �10.56 0.000
Feed rate*depth of cut 0.4762 0.2381 0.05921 4.02 0.000
Feed rate*nose radius 0.0462 0.0231 0.05921 0.39 0.699
Feed rate*cutting fluid 0.1046 0.0523 0.05921 0.88 0.384
Cutting speed*depth of cut �0.3212 �0.1606 0.05921 �2.71 0.011
Cutting speed*nose radius �0.5463 �0.2731 0.05921 �4.61 0.000
Cutting speed*cutting fluid �0.546 �0.0273 0.05921 �0.46 648
Depth of cut*nose radius 0.0654 0.0327 0.05921 0.55 0.584
Depth of cut*cutting fluid 0.3288 1644 0.05921 2.78 0.009
Nose radius*cutting fluid 0.1504 0.0752 0.05921 1.27 0.213
S¼0.410198, R2¼95.54%, R2(adj)¼93.44%
Analysis of variance for surface roughness (coded units)
Source DF Seq SS Adj SS Adj MS F P
Main effects 5 87.139 87.1391 17.4278 103.58 0.000
2-Way interactions 10 28.116 28.1158 2.8116 16.71 0.000
Residual error 32 5.384 5.3844 0.1683
Pure error 32 5.384 5.3844 0.1683
Total 47 120.639
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the surface roughness for α¼0.05, which are feed rate and
cutting speed, feed rate and depth of cut, cutting speed and
Depth of Cut, cutting speed and nose radius, depth of cut and
cutting fluid. The graphs of Normal probability plot, constant
variance plot, histogram plot depicts that the data is normally
and evenly distributed and validates that this model has a
satisfactory goodness of fit.

4.3. Working with fuzzyTECH 5.5i

The fuzzyTECH 5.5i edition is a complete fuzzy logic
software development system for all microcontroller devices.
The graphical editor and analyzer tools provide efficient
system design, optimization and verification. It generates the
fuzzy logic system designed as highly optimized assembly
code, thus circumventing the need for specialized hardware. It
is description and capability. Its main benefits are the follow-
ing graphical development environment, arbitrary curved and
linear membership functions, standard MAX-MIN/MAX-DOT
and advanced FAM inference methods with compensatory
operators, individual rule weighting, rule blocks, various

defuzzification methods (Centre of Maximum, Centre of
Minimum, Centre of Area, Mean of Maximum), off line
simulation with graphic tools, real-time code generation, etc.
For example, Fig. 11 shows the screen output, indicating Rule
31 (If cutting speed is medium, feed rate is medium and depth

Fig. 11. Matrix rule editor and COA defuzzification for rule 31.

Fig. 12. (a) 3D plot and (b) transfer plot for Rule 31.

Table 6
Comparison of experimental Ra and fuzzy output.

S.
no

Feed
rate

Cutting
speed

Depth of
cut

Experimental
Ra

Surface
roughness

(ΔRa)

Fuzzy output

1 40 4000 25 2.05 2.12 0.07
2 40 4000 13.5 1.25 1.31 0.06
3 80 1200 25 3.37 3.42 0.05
4 110 4000 25 2.09 2.12 0.03
5 195 4000 2 2.09 2.12 0.03
6 195 2600 2 2.8 2.87 0.07
7 240 2600 2 2.81 2.87 0.06
8 240 4000 2 2.8 2.87 0.07
9 240 1200 13.5 3.38 3.42 0.04
10 300 1200 25 3.4 3.42 0.02
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of cut is shallow, then surface roughness is medium.). Fig. 12
shows the 3D plot as well as the transfer plot for Rule 31.

Ten data points are tested randomly from the machining
experiment and fuzzy tech with same cutting speed, feed rate,
and depth of cut. Table 6 shows the comparison of experi-
mental data and the fuzzy output. The fuzzy output values are
slightly higher than the experimental data because the fuzzy
output weight for medium surface roughness is 2.12, which is
higher than the first experimental data point (2.05 μin). There-
fore, the subsequent fuzzy output values appear higher than the
experimental data. The important thing is that the gradient of
the fuzzy output is very similar to that of the experimental
data. This means that the fuzzy prediction can be accurate, if
the construction of the output membership functions is correct.
The difference of Fuzzy output and experimental Ra are shown
in Fig. 13. The test results show that a surface roughness
model has been successfully built, hence one can predict the
surface roughness before the machining process is performed.

5. Conclusions

The purpose of this research was to develop a prediction
model for surface roughness. This system is designed to
provide the real-time surface roughness values need for
decision-making in a more realistic industrial environment.
The purpose of proposing the fuzzy model was to develop a
leading to a more timely tuned prediction model. A fuzzy
model of 63 rules was developed for predicting the surface
roughness for a given set of inputs cutting speed, feed rate, and
depth of cut. The obtained fuzzy model is capable of predicting
the surface roughness for a given set of inputs (cutting speed,
feed rate, and depth of cut). Therefore, the operator can predict
the quality of the surface for a given set of working parameters
and will be able to set the machining parameters to achieve a
certain surface quality. The model is verified by comparing the
fuzzy output with the experimental data used to build the

empirical model. The results of these experiments are in a
good agreement with those predicted using the fuzzy model.
The accuracy of the obtained model is a function of the
number of the rules and depends on the clustering parameters.
Changing these parameters may increase the numbers of the
rule that in turn affect the accuracy of the obtained model. The
model resulting in the Ra value deviating the least from the
actual Ra value and is regarded as the most robust surface
roughness prediction model. Percentage deviation was the
criterion to judge the prediction efficiency of the fuzzy model
and multiple regression equation. The most important conclu-
sion to be reported is that the developed system for the
prediction and control of surface roughness as applied to the
milling of aluminum block works. The accuracy of the system
is 95%, as tested experimentally under realistic operating
conditions. However, it is also worthwhile to comment on
the degree of development effort and time. The process of
generating the data and to achieve the best input to output
mapping was very time consuming.
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