• Title/Summary/Keyword: DNA sequence polymorphism

Search Result 280, Processing Time 0.028 seconds

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

Development of a SCAR Marker Linked to Male Fertility Traits in 'Jinkyool' (Citrus sunki) ('진귤' (Citrus sunki) 의 웅성가임 연관 SCAR 마커 개발)

  • Chae, Chi-Won;Dutt, Manjul;Yun, Su-Hyun;Park, Jae-Ho;Lee, Dong-Hoon
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1659-1665
    • /
    • 2011
  • In Citrus, an $F_1$ segregation population of 150 plants was constructed from a cross between 'Kiyomi' (C. unshiu ${\times}$ C. sinensis) carrying the male sterility trait and 'Jinkyool' (C. sunki). Sequence-related amplification polymorphism (SRAP) combined with bulked segregant analysis was used to develop markers linked to male fertility. In the $F_1$ population, 66 out of 150 seedlings had aborted anthers and the ratio of male sterile plants to fertile plants in the progenies matched the expected Mendelian segregation ratio of 1:1 ($x^2$ =2.16 at p=0.05). From the profiling of the 197 SRAP primer sets, three SRAP primer sets (F4/R27, F39/R60, and F15/R37) that were closely linked to the target trait were identified and successfully converted into a sequence characterized amplified region (SCAR) marker for selection of male fertility in citrus. The SCAR marker, using the pMS 33U/pMS 1462L primer set specifically, produced a single 1.4-Kb fragment that was linked to male fertility. Our results suggested that this SCAR marker can be useful for marker-assisted selection of male sterile individuals in breeding $F_1$ progenies in Citrus.

DNA Polymorphisms in SREBF1 and FASN Genes Affect Fatty Acid Composition in Korean Cattle (Hanwoo)

  • Bhuiyan, M.S.A.;Yu, S.L.;Jeon, J.T.;Yoon, D.;Cho, Y.M.;Park, E.W.;Kim, N.K.;Kim, K.S.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.765-773
    • /
    • 2009
  • Sterol regulatory element binding factor 1 (SREBF1) and fatty acid synthase (FASN) genes play an important role in the biosynthesis of fatty acids and cholesterol, and in lipid metabolism. This study used polymorphisms in the intron 5 of bovine SREBF1 and in the thioesterase (TE) domain of FASN genes to evaluate their associations with beef fatty acid composition. A previously identified 84-bp indel (L: insertion/long type and S: deletion/short type) of the SREBF1 gene in Korean cattle had significant associations with the concentration of stearic (C18:0), linoleic (C18:2) and polyunsaturated fatty acids (PUFA). The stearic acid concentration was 6.30% lower in the SS than the LL genotype (p<0.05), but the linoleic and PUFA contents were 11.06% and 12.20% higher in SS compared to LL (p<0.05). Based on the sequence analysis, five single nucleotide polymorphisms (SNPs) g.17924G>A, g.18043C>T, g.18440G>A, g.18529G>A and g.18663C>T in the TE domain of the FASN gene were identified among the different cattle breeds studied. Among these, only g.17924 G>A and g.18663C>T SNPs were segregating in the Hanwoo population. The g.17924G>A SNP is a non-synonymous mutation (thr2264ala) and was significantly associated with the contents of palmitic (C16:0) and oleic acid (C18:1). The oleic acid concentration was 3.18% and 2.79% higher in Hanwoo with the GG genotype than the AA and AG genotypes, respectively (p<0.05), whereas the GG genotype had 3.8% and 4.01% lower palmitic acid than in those cattle with genotype AA and AG, respectively (p<0.05). Tissue expression data showed that SREBFI and FASN genes were expressed in a variety of tissues though they were expressed preferentially in different muscle tissues. In conclusion, the 84-bp indel of SREBF1 and g.17924G>A SNP of the FASN gene can be used as DNA markers to select Hanwoo breeding stock for fatty acid composition.

Early Identification of Putative Zygotic Seedlings in Citrus Crosses between 'Morita unshiu' (Citrus. unshiu Marc.) and 'Ponkan' (C. reticulata Blanco) Using RAPD and SRAP (RAPD와 SRAP 방법을 이용한 '성전온주'(C. unshiu Marc.)와 '병감'(C. reticulate Blanco) 교잡실생 식별)

  • Yun, Su-Hyun;Moon, Young-Sun;Jin, Seong-Beom;Kang, In-Kyu;Lee, Dong-Hoon
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.502-508
    • /
    • 2011
  • The purpose of this study was to evaluate the methods of identifying zygotic seedlings of crosses between 'Morita unshiu' (Citrus. unshiu Marc.) and 'Ponkan' (C. reticulata Blanco). In order to investigate the frequency and position of zygotic seedlings and to determine the efficiency of zygotic seedling identification, random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) were performed using UBC (9, 27, 229, 230, and 254) primers and F4/R27, F7/R14, F12/R10, and F44/R62 primer sets, respectively. A total of 37 putative zygotic seedlings out of 55 individuals were selected by RAPD and SRAP. The F7/R14 primer pair showed a screening ability of 45.5% (25/55), whereas the primer UBC27 revealed the highest efficiency of zygotic seedling identification (50.9%, 28/55). When both UBC27 and F7/R14 were properly used for selection of hybridized seedlings of 'Morita unshiu' (C. unshiu Marc.) and 'Ponkan' (C. reticulata Blanco), screening efficiency was increased to 60% (33/55) for putative zygotic seedlings. Thus, it is possible to select putative hybrid zygotic seedlings in an accurate and effective manner by RAPD and SRAP.

Origin of the Korean Mandarin Fish, Siniperca scherzeri and Its Molecular Phylogenetic Relationships to Other Siniperca Fishes (한국산 쏘가리의 기원과 분자계통진화적 위치)

  • Kim, Maeng-Jin;Song, Choon-Bok
    • Korean Journal of Ichthyology
    • /
    • v.23 no.2
    • /
    • pp.95-105
    • /
    • 2011
  • To explain the origin of the Korean mandarin fish (Siniperca scherzeri), phylogenetic relationships and DNA polymorphism among Siniperca fishes have been investigated based on mitochondrial cytochrome b DNA sequences. As a result, S. roulei were firstly differentiated early in the evolution of Siniperca fishes and the other six species (S. schezeri, S. undulata, S. fortis, S. obscura, S. knerii and S. chuatsi) were evolved slightly later. However, the order of species differentiation among six species was not clear because the nodes of their phylogeny were poorly resolved. The constructed molecular phylogeny revealed three genetically distinct groups of local populations of S. scherzeri. The first group (group 1) is the local populations of Korean peninsula and northern China including Lioaning and Henan. The second one (group 2) is the local populations of Anhui, Fujian and Guangxi. The third one (group 3) is the local population of Zhejiang. The number of nucleotide differences in base pairs were 31~43 between group 1 and 2; 37~44 between group 2 and 3; 27~29 between group 1 and 3; and 1~5 within group 1. Thus, the Korean mandarin fish was likely to be originated from the northern China local population which was isolated from the middle or southern China local populations during the Cenozoic Pliocene. Low level of sequence divergence between Korean mandarin fish populations and northern China population indicated a recent expansion of distribution ranges from northern China to Korean peninsula.

Genetic Variations of Chicken MC1R Gene and Associations with Feather Color of Korean Native Chicken (KNC) 'Woorimatdag' (토종 '우리맛닭' 부계 및 실용계에서 MC1R 유전자 변이 및 모색과의 연관성 분석)

  • Park, Mi Na;Kim, Tae-Hun;Lee, Hyun-Jeong;Choi, Jin Ae;Heo, Kang-Nyeong;Kim, Chong-Dae;Choo, Hyo-Jun;Han, Jae-Yong;Lee, Taeheon;Lee, Jun-Heon;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.139-145
    • /
    • 2013
  • There are several loci controlling the feather color of birds, of which one of the most studied is Extended black (E) encoding the melanocortin 1-receptor (MC1R). Mutations in this gene affect the relative distribution of eumelanin, phaeomelanin. The association of feather color and sequence polymorphism in the melanocortin 1-receptor (MC1R) gene was investigated using Korean native chicken H breed (H_PL) and 'Woorimatdag' commercial chickens (Woorimatdag_CC). In order to correlate gene mutation to Korean native chicken feather color, single nucleotide polymorphism (SNP) from MC1R gene sequence were investigated. A total of 307 birds from H_PL and Woorimatdag_CC were used. H_PL have black, black-brown feather color and Woorimatdag_CC have black with brown spots or brown with black spots. There are 6 SNPs in MC1R gene, locus T69C, C212T, A274G, G376A, G636A, T637C. 3 SNPs are nonsynonymous that change amino acid. But it is difficult to find correlation of feather color and polymorphisms. It will be needed to increase the population of Korean native chicken H breed and correlation analysis of genetic variation with feather colors.

Development of RAPD-SCAR Molecular Marker Related to Seed-hair Characteristic in Carrot (당근(Daucus carota var. sativa) 종자모 형질 관련 RAPD-SCAR 분자표지 개발)

  • Shim, Eun-Jo;Park, Sung-Kwan;Oh, Gyu-Dong;Jun, Sang-Jin;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.756-763
    • /
    • 2013
  • Mechanical hair removal of carrot seed causes seed injuries and suppresses the germination in carrot cultivation. This study was performed to develop molecular markers for breeding high quality cultivars with short-hair seed. To meet this objective, random amplified polymorphic DNA (RAPD)-sequence characterized amplified region (SCAR) markers specifically linked to seed-hair characteristic were identified using CT-SMR 616 OP 389-1 line with short-haired seed and CT-SMR 616 OP 616-33 line with long-haired seed, bred by self-pollination for 6 years from 2008 to 2013, as parents. After seed hair lengths of these lines were analyzed using microscope, next generations were advanced and compared with the molecular markers polymorphism. From RAPD analysis using fixed lines in 2011, twelve RAPD primers showing polymorphic bands specific between the two lines were identified from 80 random primers. To develop RAPD-SACR marker, SCAR primers were designed based on sequence analysis of these specific RAPD bands and more than three combinations of primers were tested. As a result, it was found that the $SCA2_{1.2}$ amplified single polymorphic band from short-haired seed line. To confirm this result, $SCA2_{1.2}$ marker was retested by applying to the 2012 and 2013 progenies. Finally, it was concluded that the developed $SCA2_{1.2}$ marker distinguished short-haired line from long-haired seed line. Therefore, SCAR marker, $SCA2_{1.2}$ is expected to be utilized for breeding of the short-haired seed cultivars.

Production of Transgenic Pigs with an Introduced Missense Mutation of the Bone Morphogenetic Protein Receptor Type IB Gene Related to Prolificacy

  • Zhao, Xueyan;Yang, Qiang;Zhao, Kewei;Jiang, Chao;Ren, Dongren;Xu, Pan;He, Xiaofang;Liao, Rongrong;Jiang, Kai;Ma, Junwu;Xiao, Shijun;Ren, Jun;Xing, Yuyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.925-937
    • /
    • 2016
  • In the last few decades, transgenic animal technology has witnessed an increasingly wide application in animal breeding. Reproductive traits are economically important to the pig industry. It has been shown that the bone morphogenetic protein receptor type IB (BMPR1B) A746G polymorphism is responsible for the fertility in sheep. However, this causal mutation exits exclusively in sheep and goat. In this study, we attempted to create transgenic pigs by introducing this mutation with the aim to improve reproductive traits in pigs. We successfully constructed a vector containing porcine BMPR1B coding sequence (CDS) with the mutant G allele of A746G mutation. In total, we obtained 24 cloned male piglets using handmade cloning (HMC) technique, and 12 individuals survived till maturation. A set of polymerase chain reactions indicated that 11 of 12 matured boars were transgene-positive individuals, and that the transgenic vector was most likely disrupted during cloning. Of 11 positive pigs, one (No. 11) lost a part of the terminator region but had the intact promoter and the CDS regions. cDNA sequencing showed that the introduced allele (746G) was expressed in multiple tissues of transgene-positive offspring of No.11. Western blot analysis revealed that BMPR1B protein expression in multiple tissues of transgene-positive $F_1$ piglets was 0.5 to 2-fold higher than that in the transgene-negative siblings. The No. 11 boar showed normal litter size performance as normal pigs from the same breed. Transgene-positive $F_1$ boars produced by No. 11 had higher semen volume, sperm concentration and total sperm per ejaculate than the negative siblings, although the differences did not reached statistical significance. Transgene-positive $F_1$ sows had similar litter size performance to the negative siblings, and more data are needed to adequately assess the litter size performance. In conclusion, we obtained 24 cloned transgenic pigs with the modified porcine BMPR1B CDS using HMC. cDNA sequencing and western blot indicated that the exogenous BMPR1B CDS was successfully expressed in host pigs. The transgenic pigs showed normal litter size performance. However, no significant differences in litter size were found between transgene-positive and negative sows. Our study provides new insight into producing cloned transgenic livestock related to reproductive traits.

Evaluation of Genetic Variations in miRNA-Binding Sites of BRCA1 and BRCA2 Genes as Risk Factors for the Development of Early-Onset and/or Familial Breast Cancer

  • Erturk, Elif;Cecener, Gulsah;Polatkan, Volkan;Gokgoz, Sehsuvar;Egeli, Unal;Tunca, Berrin;Tezcan, Gulcin;Demirdogen, Elif;Ak, Secil;Tasdelen, Ismet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8319-8324
    • /
    • 2014
  • Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intronexon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs $c.^*1287C$ >T (rs12516) (BRCA1) and $c.^*105A$ >C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism $c.^*1287C$ >T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP $c.^*1287C$ >T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

BRCA1 Gene Exon 11 Mutations in Uighur and Han Women with Early-onset Sporadic Breast Cancer in the Northwest Region of China

  • Cao, Yu-Wen;Fu, Xin-Ge;Wan, Guo-Xing;Yu, Shi-Ying;Cui, Xiao-Bin;Li, Li;Jiang, Jin-Fang;Zheng, Yu-Qin;Zhang, Wen-Jie;Li, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4513-4518
    • /
    • 2014
  • The prevalence of BRCA1 gene mutations in breast cancer differs between diverse ethnic groups. Relatively little information is known about patterns of BRCA1 mutations in early-onset breast cancer in women of Uighur or Han descent, the major ethnic populations of the Xinjiang region in China. The aim of this study was to identify BRCA1 mutations in Uighur and Han patients with early-onset (age <35 years), and sporadic breast cancer for genetic predisposition to breast cancer. For detection of BRCA1 mutations, we used a polymerase chain reaction single-stranded conformation polymorphism approach, followed by direct DNA sequencing in 22 Uighur and 13 Han women with early-onset sporadic breast cancer, and 32 women with benign breast diseases. The prevalence of BRCA1 mutations in this population was 22.9% (8/35) among early-onset sporadic breast cancer cases. Of these, 31.8% (7/22) of Uighur patients and 7.69% (1/13) of Han patients were found to have BRCA1 mutations. In 7 Uighur patients with BRCA1 mutations, there were 11 unique sequence alterations in the BRCA1 gene, including 4 clearly disease-associated mutations on exon 11 and 3 variants of uncertain clinical significance on exon 11, meanwhile 4 neutral variants on intron 20 or 2. None of the 11 BRCA1 mutations identified have been previously reported in the Breast Cancer Information Core database. These findings reflect the prevalence of BRCA1 mutations in Uighur women with early-onset and sporadic breast cancer, which will allow for provision of appropriate genetic counseling and treatment for Uighur patients in the Xinjiang region.